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Preface 

 

Dear AKTU University Students, 

I am excited to present these comprehensive notes for the "Design 

and Analysis of Algorithms" course tailored specifically for your 

academic journey. These notes aim to serve as a valuable companion, 

offering clear explanations, insightful examples, and practical insights 

to aid your understanding of algorithmic principles. Whether you're 

preparing for exams or deepening your grasp of key concepts, these 

notes are crafted to enhance your learning experience. Wishing you a 

successful and enriching exploration of algorithm design. 

 

Best regards, 

Md shahid (Assistant professor, MIET, MEERUT) 

2nd edition 

Year-2023 

The author can be reached at shahid.55505@gmail.com. 
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Unit-01 

  

Algorithm—It is a combination of a sequence of finite steps to             

solve a computational problem.   

Program— A program, on the other hand, is a concrete 

implementation of an algorithm using a programming 

language. 

Properties of Algorithm    

➢ It should terminate after a finite time. 

➢ It should produce at least one output. 

➢ It should take zero or more input externally. 

➢ It should be deterministic (unambiguous). 

➢ It should be language independent.     

Example to differentiate between algorithm and program 

       Add() 
          { 

       1.  input two numbers a and b 

       2.  sum a and b and store the result in c 

       3.  return c 

          } 

 The above example is an algorithm as it follows its 
properties. 
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While(1) 
       { 

         printf(“MIET”); 

       } 

The above example is not an algorithm as it will never 
terminate. Though it is a program. 

 

The main algorithm design techniques 

1. Divide and conquer technique 
2. Greedy technique 
3. Dynamic programming 
4. Branch and bound 
5. Randomized  
6. Backtracking  

 

Note— The most basic approach to designing algorithms is 

the brute force technique, where one attempts all possible 

solutions to a problem and opts for the successful one. All 

computational problems can be solved through the brute 

force method, though often not achieving noteworthy 

efficiency in terms of space and time complexity. 

 

For example, search for an element in a sorted array of 

elements using linear search. 
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Steps required to design an algorithm 

1.Problem Definition: Clearly understand the problem you need to 

solve. Define the input, output, constraints, and objectives of the 

algorithm. 

2.Design Algorithm: Choose an appropriate algorithmic technique 

based on the nature of the problem, such as greedy, divide and 

conquer, dynamic programming, etc. 

3.Draw Flowchart: Create a visual representation of your algorithm 

using a flowchart. The flowchart helps to visualize the logical flow of 

steps. 

4.Validation: Mentally or manually walk through your algorithm with 

various inputs to verify its correctness. Ensure it produces the 

expected results. 

5.Analyze the Algorithm: Evaluate the efficiency of the algorithm in 

terms of time complexity (how long it takes to run) and space 

complexity (how much memory it uses). 

6.Implementation (Coding): Translate your algorithm into actual code 

using a programming language of your choice. Write clean, well-

organized code that follows best practices. 

 

Q. Define 'algorithm,' discuss its main properties, and outline the steps 

for designing it. 

Q. What do you mean by an algorithm, and what are the main 

algorithm design techniques?  
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Analysis of Algorithms 

The efficiency of an algorithm can be analyzed at two different stages: 

before implementation (A Priori Analysis) and after implementation (A 

Posteriori Analysis).  

 

A Priori Analysis— This is a theoretical analysis of an algorithm's 

efficiency before it's actually implemented. The analysis assumes that 

certain factors, such as processor speed and memory, remain constant 

and do not affect the algorithm's performance. It involves evaluating 

an algorithm based on its mathematical characteristics, such as time 

complexity (Big O notation) and space complexity. It provides insights 

into how an algorithm will perform under ideal conditions and helps in 

comparing different algorithms in terms of their theoretical efficiency. 

 

A Posteriori Analysis— This is an empirical analysis that occurs after 

an algorithm has been implemented in a programming language and 

executed on an actual computer. The algorithm is tested and executed 

on a target machine, and actual statistics like running time and space 

required are collected. A Posteriori Analysis provides a more realistic 

view of how an algorithm performs in a real-world setting, considering 

hardware characteristics, compiler optimizations, and other factors. It 

helps validate the theoretical analysis and may reveal unexpected 

performance issues or bottlenecks. 

Note—Writing a computer program that handles a small set of data is 

entirely different from writing a program that takes a large number of 

input data. The program written to handle a big number of input data 

must be algorithmically efficient in order to produce the result in 

reasonable time and space.    
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Asymptotic Analysis of Algorithms 

Asymptotic analysis of algorithms is a method used to analyze the 

efficiency and performance of algorithms as the input size grows 

towards infinity. It focuses on understanding how an algorithm's 

performance scales with larger inputs and provides a way to express 

the upper (worst-case) and lower bounds (best-case) on its execution 

time or space complexity. The primary goal of asymptotic analysis is 

to identify the algorithm's growth rate, which helps in making 

comparisons between different algorithms and determining their 

suitability for various problem sizes.  

Asymptotic Notations: 

1. O [Big-oh] (upper bound) 

2. Ω [Big-omega] (lower bound) 

3. ɵ [Big-theta] (tight bound) 

4. o [small-oh] (Not tightly upper bound) 

5. w [small omega] (Not tightly lower bound) 

 

1. Big-oh Notation (O) : It is used to describe the upper bound or 

worst-case performance of an algorithm in terms of its time 

complexity or space complexity. It provides an estimate of the 

maximum amount of time or space an algorithm can require for 

its execution as the input size increases.  

 

Note: Most of the time, we are interested in finding only the 

worst-case scenario of an algorithm (worst case time complexity). 

Big O notation allows for a high-level understanding of how an 

algorithm's efficiency scales without getting into specific 

constants or lower-order terms. 
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We say that 

f(n) = O g(n)  if and only if  

f(n) <= c . g(n)                             for some c >0 after n >= no >=0  

Question: Find out upper bound for the function f(n) = 3n+2. 

Solution:  

Steps: 

1. We know that definition of upper bound is f(n) <= c. g(n). 

2. f(n) = 3n + 2 (Given) 

3. We need to find out c and g(n).  

4. If we choose c=5 and g(n) = n, then 3n+2 <= 5*n.    

5. For c=5 and n0 = 1 (starting value of “n”), f(n)<=c. g(n). 

6. Therefore, f(n) = O(n)    

 

Note: Other functions that are larger than f(n), such as n^2, n^3, 

nlogn, etc., will also serve as upper bounds for the function f(n). 

However, we typically consider only the closest upper bound among 

all possible candidates, as the remaining upper bounds are not as 

useful.                

1. Given f(n) = 2n2 + 3n + 2 and g(n) = n2 , prove that f(n) = O g(n). 

Solution:    

Steps: 
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1. We have to show f(n) <= c. g(n) where c and n0 are some positive 

constants  for all n  which is >= n0  

2. Now, find out the value of c and n0 such that the equation-(1) 

gets true. 

                                         2n2 + 3n + 2 <= c. (n2) ………(1) 

If we put c = 7 (note— we can take any positive value for c), then 

2n2 + 3n + 2 <= 7 n2 

Now, put n=1 which is n0 (starting value for input n) 

7 <= 7 [ True] 

Hence, when c=7 and n0 =1,  f(n) = O g(n)  for all n which is > = n0 

 

2. Given f(n) = 5n2 + 6n + 4 and g(n) = n2 , then prove that f(n) is O(n2). 

 

Solution: 

 

f(n) will be O(n2) if and only if the following condition holds good: 

 

f(n) <= C. g(n) where C is some constant and n>=n0 >=0 

 

5n2 + 6n + 4 < = C. n2  

If we put C=15 and n0 = 1 , then we get  

15 <= 15 ( which is true. ) 

 

It means f(n) is O(n2) where C=15 , and n0 =1  

 

Note: We have to find out c and n0 (starting value of input n) to solve 

such a question. 
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3. Solve the function f(n) = 2n + 6n2 + 3n and find the big-oh (O) 

notation. 

Steps: 

1. Find out the greatest degree of “n” from f(n), which is big-oh. 

2. Prove it using the formula f(n) <= O(g(n)). 

Solution: 

Big-oh ( upper bound ) of f(n) = 2n + 6n2 + 3n will be 2n iff 

f(n)<= c. 2n  for some constant c > 0 and n> = n0 >=0 

2n + 6n2 + 3n < c. 2n   

If we put c=11 and n0 =1, then we get 

11 <= 22 ( It is true.) 

It means big-oh of f(n) is 2n when c=11 and n0 = 1 

 

2. Big-omega Notation (Ω): It is used to describe the lower bound or 

best-case performance of an algorithm in terms of its time complexity 

or space complexity. It provides an estimate of the minimum amount 

of time or space an algorithm can require for its execution as the input 

size increases.  
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T 

 

 

 

We say that 

f(n) = Ω g(n)  if and only if  

f(n) >= c . g(n)                             for some c >0 after n >= no >=0  

 

For example : 

1. Given f(n) = 3n + 2 and g(n) = n, then prove that f(n) = Ω g(n) 

 

Solution 

1. We have to show that f(n) >= c. g(n) where c and n0 are some 

positive constants  for all n which is >= n0 

2. 3n + 2 >= c . n    

3. When we put c=1  

4. 3n +2 >= n  

5. Put n = 1 

6. 5 > = 1 [ True ] 

7. Hence, when we put c=1 and n0=1, f(n)= Ω g(n).  
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2. Solve the function: f(n) = 3n +5n2 + 8n and find the big 

omega(lower bound) notation. 

 

Solution : 

 

Steps: 

1. Find out the smallest degree of n from f(n). This will be the 

value for lower bound ( best case for the function f(n). 

2. Use the formula to find out c and n0 to prove your claim. 

 

f(n) = Ω (n ) iff  f(n) >= C. n  where c is some constant and n>=n0>=0 

3n +5n2 + 8n >= c. n 

If we put c=16 and n0 = 1 , then we get 

16 >= 16 ( holds good) 

It is means lower bound (Ω) for the given function f(n)= 3n +5n2 + 8n  

is n.  

 

 

3. Big Theta Notation (Θ): It’s the middle characteristics of both 

Big O and Omega notations as it represents the lower and upper 

bound of an algorithm. 
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We say that 

f(n) = ɵ g(n) if and only if  

c1.g(n) <= f(n) <= c2.g(n) for all n >=n0>=0 and c >0 

 

For example 

1. Given f(n) = 3n +2 and g(n) = n, prove that f(n) = ɵ g(n). 

 

Solution 

1. We have to show that c1.g(n) <= f(n) <= c2.g(n) for all n >=n0>=0 

and c >0 

2. c1.g(n) <= f(n) <= c2.g(n) 

3. c1. n <= 3n+2 <= c2.n 

4. Put c1 =1, c2 = 4 and n=2 , then 2 <= 8 <=8 [ True ] 
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5. Hence, f(n) = ɵ g(n) where c1=1,c2=4 and n0=2.  

 

3. Solve the function: f(n) = 27n2 +16 and find the Tight (average bound) 

bound it. 

Solution: 

1. If we have upper bound (big-oh) and lower bound (big omega) 

of f(n) equal, that’s when we can call it Theta-notation of f(n). 

2.  Use the formula c1. g(n) <= f(n) <= c2. g(n) 

 

          Let’s check if n2  is Theta or not. 

27n2 +16  < = c1. n 2  ( for upper bound ) 

If we put c1 = 43 and n=1, then we get 

43 < = 43 ( holds good) 

 

Now check for the lower bound  

27n2 +16  >= c2. n 2     

If we put c1 = 43 and n=1, then we get 

43 > = 43 ( hold good) 

Since upper and lower bounds are the same for the given function 

f(n)= 27n2 + 16,  n2 is Tight- bound for the function f(n). 
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4. Small-oh [o] : We use  o-notation to denote an upper bound that is 

not asymptotically tight whereas big-oh ( asymptotic upper bound) 

may or may not be asymptotically tight. 

We say that 

f(n) = o(g(n)) if and only if  

0<= f(n) < c. g(n) for all values of c which is >0 and  n>=n0>0 

Or 

Lim  f(n)/g(n) = 0 
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n->∞ 
 
 

For example 

1. Give f(n) = 2n and g(n) = n2, prove that  f(n) = o(g(n)) 

Solution 

Lim  2n/n2  
n->∞ 
 
Lim  2/n 
n->∞ 
 
Lim  2/∞       = 0 
n->∞ 
 
Hence, f(n) = o(g(n)) 

5. w [small omega] : We use w-notation to denote a lower bound that 

is not asymptotically tight. 

We say that 

f(n) = w(g(n)) if and only if  

0 <= c. g(n) < f(n) for all values of c which is >0 and  n>=n0>0 

Or 

Lim  f(n)/g(n) = ∞ 
n->∞ 
 

For example 

1. Given f(n)= n2/2 and g(n)= n , prove that f(n) = w(g(n)). 
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Solution  

Lim  n2/2 /n  
n->∞ 
 

Lim  n/2  
n->∞ 
 
Lim ∞ /2    = ∞ 
n->∞ 
 
Hence, f(n) = w(g(n)) 

 

Question. Why should we do asymptotic analysis of algorithms?  

It is crucial for several reasons: 

Efficiency Comparison: It allows us to compare and evaluate different 

algorithms based on their efficiency. By analyzing how an algorithm's 

performance scales with input size, we can select the most suitable 

algorithm for a given problem. 

Algorithm Design: Asymptotic analysis guides the design of new 

algorithms. It helps in making informed design choices to optimize 

algorithms for various use cases. 

Resource Management: Understanding the resource requirements of 

algorithms as input size grows helps allocate computational resources 

efficiently, preventing bottlenecks. 

Scalability: It provides insights into how algorithms will perform as 

data sizes increase, ensuring that systems can handle larger inputs 

efficiently. 
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Question.  Order the following functions by their asymptotic growth, 

and justify you answer:   f1=2n, f2= n3/2, f3=nlog n, f4= nlogn. 
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Complexity of Algorithms 

 
1. Time complexity  

2. Space complexity  

Algorithms can be broadly categorized into two main groups based on 

their structure and approach: 

1. Iterative algorithms ( having loop(s) ) 

2. Recursive algorithms (having recursion) 

Note: In the ‘a priori’ analysis of algorithms, the RAM (Random 
Access Machine) model is used for analyzing algorithms without 
running them on a physical machine. 

The RAM model has the following properties: 

• A simple operation ( + , \ , * , - , = , &&, ||, if ) takes one-time 

step. 

• Loops are comprised of simple/primitive/basic operations. 

•     Memory is unlimited and access takes one-time step.  

Note: In the last step of the ‘a priori’ analysis of algorithms, 

asymptotic notation is commonly used to characterize the time 

complexity of an algorithm. Asymptotic notation provides a concise 

way to describe how the performance of an algorithm scales as the 

input size becomes very large. It allows us to focus on the most 

significant factors affecting the algorithm's efficiency and ignore 

constant factors and lower-order terms. 

Q. What are the key characteristics of the RAM model? 
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Time complexity (running time) 

 

The running time of the algorithm is the sum of running times for 

each statement executed; a statement that takes Ci steps to execute 

and executes “n” times will contribute (Ci * n) to the total running 

time. 

 

 

Note: “Ci (i=1,2,3 …, n)” indicates constant unit of time. 

 

 

A(n) 

{                                                             Cost                    Times 

    int i;                                                   C1                         1                                 

    for( i = 1; i <=n ; i++)                       C2                       n+1 

         printf(“MIET”);                           C3                        n 

} 

 

T(n) = C1*1 + C2*(n+1) + C3* n 

After eliminating constant terms, we get the time complexity in 

terms of n. 

O(n); linear time 

Q. With a suitable example, define the term "running time" of an algorithm. 
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Time Complexity of Iterative Algorithms 

 

Note— When an algorithm contains an iterative control construct 

such as a while or for loop, we can express its running time as the sum 

of the times spent on each execution of the body of the loop. 

Note— If a program doesn’t have loop(s) as well as recursion, then it 

takes O (1)- constant running time. 

A() 
{ 
      pf(“MIET”);         // one-time step 
      pf(“MIET”);       // one-time step 
      pf(“MIET”);       // one-time step 
} 
 

1+1+1= 3 (it’s a constant.) 

Note— We can define a constant running time using either O (1) or 

O(C). 

Pattern-01 One loop and increment/decrement is by 1 

A(n) 
{ 
for(i=1 ; i<=n; i++)     → n+1  
      pf(“MIET”);          →  n-1 
} 
 
 
 
T(n)= n+1 +n+1  
       = 2n+2 
T(n) = O(n) [ We remove all constant terms and consider only highest 
degree of n for the running time.] 
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Pattern-02 One loop and increment/decrement is not by 1 

In this case, we need to calculate the number of iterations carefully. 
 
A (n) 
{ 
    int i; 

    for( i= 1;  i<n ; i= i*2){ 

            pf(“MIET”); 

          } 

} 

As loop is not getting incremented by one, we will have to carefully 

calculate the number of times “MIET” will be executed. 

i= 1, 2, 4, . . . , n 

After Kth iterations, “i” gets equal to “n”:  

                 i= 1, 2, 4, . . . , n 

Iterations= 20, 21, 22, … , 2k 

2k = n 

Convert it into logarithmic form… [ If ab = c, we can write it loga
c = b ] 

k = log2n 

O(logn)   
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A(n) 

{ 

     int  i , j;  

     for( i = 1 to n)                  

           for(j = 1 to n)              

                 pf(“MIET”);    //It 

will be printed n2 times . 

} 

 

A(n) 

{ 

     int  i , j , k;  

     for( i = 1 to n)                  

           for(j = 1 to n)    

               for(k = 1 to n) 

                     pf(“MIET”);//n3 

}          

Time complexity is O(n2)                        Time complexity is O(n3)                                                               

                                       

 

 

 

 

 

Pattern-4 When there is a dependency between the loop and the 

statements in the body of the loop. 

 

 

A(n) 

{ 

1.   int i = 1, j = 1; 

2.   while( j <= n) 

    { 

3.   i++; 
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4.   j = j + i; 

5. pf(“MIET”); // We need to know the no of times it’ll be printed 

    } 

} 

 

 

Solution:  

We have to find out the number of times “MIET” will be printed to know 

the time complexity of the above program. We can see that there is a 

dependency between the line number 2 (while loop) and 4( the value of 

“j” which in turns depends on “i”). 

 

i = 1, 2, 3, 4, … k 

j = 1, 3, 6, 10 … k(k+1)/2  [sum of the first “K” natural numbers] 

 

k(k+1)/2     =  n+1  [ when the value of “n” gets n+1, condition gets false] 

k2  = n    [ We eliminate constant terms, consider only variable.] 

k =√n   Time complexity is O(√n)  

Pattern05: When there is a dependency between loops (having more 

than one loop) 

 

Note – We have to unroll loops in order to find out the number of times 

a particular statement gets executed. 
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A(n) 

{ 
      int  i, j, k; 

            for(i = 1; i <= n; i++) 
              {  
                  for(j = 1; j <= i; j++) 
                   { 
                       for(k = 1; k <= 100; k++) 
                            { 
                               Pf(“MIET”); 
                            } 
                   } 
              } 
      } 
 
There is a dependency between the second and the first loop; therefore, 
we will have to unroll the loops to know the number of times “MIET” will 
be printed.              

             i = 1                         i = 2                  i = 3     …           i = n 
             j = 1                         j = 2                  j = 3                   j = n 
             k =  1*100              k =  2 * 100     k = 3* 100        k = n* 100 

           

          1*100 + 2*100 + 3*100 + . . . + n*100 

          100( 1+ 2+3 +…n) 

          100( n(n+1)/2)  = 50*n2 + 50*n   

 

Time complexity = O(n2) [ We remove constant terms and lower order 

terms.] 
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Q. Write a function to compute xn in logarithmic time complexity using 

an iterative approach. 

 

Time Complexity of Recursive Algorithms 

To find out the time complexity of recursive programs, we have to write 

a recurrence relation for the given program and then solve it using one 

of the following methods: 

1. Iteration or Back substitution method  

2. Recursion-tree method  

3. Master method 

4. Forward substitution method (Substitution Method)  

5. Changing variable method  

Let’s learn how to write a recurrence relation for the given program 

having a recursive call/function. 
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Note: Each recursive algorithm or program must have a stopping 

condition (also known as an anchor condition or base condition) to halt 

the recursive calls. 

 
A(n) 
{ 
  if (n > 0) // stopping condition for the recursive call 
    {  
        pf(“MIET”); 
        A(n-1);  // Calling itself( recursive function) 
     } 

  } 

 

We assume that T(n) is the total time taken to solve A(n) , where n is the 

input. It means that this T(n) is split up among all statements inside the 

function i.e., time taken by all instructions inside a function is equal to 

T(n). 

Note: “if” and “print” take constant amount of time step as per the RAM 

model, and we can use either 1 or C to indicate it. When “if- condition” 

gets false, it again takes constant amount of time — (one-time step). 

 

 

 

Recurrence relation for the above program is given below:  

                                T(n) = T(n-1) + 1 when n>0   

                                             1              When n = 0  ( stopping condition )  
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#Mixed (iterative + recursive) 
 
A(n) 
{ 
   If(n>0)                                         …... 1 
   { 
      for(i=1; i<=n; i++)                       …. n+1 
         { 
            pf(“MIET”);                        …... n 
         } 
    A(n-1);                                         ….T(n-1)  
    } 
} 

 

 

 

                              T(n-1) + n when n>0   

    T(n)     =  

                              1              When n = 0   

 
 
 
#Factorial of a number  
 
fact(n) 
{   
    if(n<=1)             
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        return 1; 
    else   
        return n*fact(n-1); // here “*” takes constant time step 
} 
 

Note: Multiplication and other instructions in green will take a constant 

amount of time. Left side of the * is   the first operand, cannot be 

included in the equation. 

 

T(n) =  T(n-1) + c  when n>1 

        =      1             when n <=1  

 

#Fibonacci number Fn 

fib(n) 
{ 
   if (n== 0 || n==1) 
     return n; 
  else  
    return fib(n-1)+ fib(n-2); 
} 

 

T(n)  = T(n-1)+ T(n-2) + 1 when n >1 

          1 unit of time     when n<=1 
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1. Iteration method (backward substitution) for solving recurrences 

The Iteration Method, also known as Backward Substitution, is a 

technique used to solve recurrence relations and determine the time 

complexity of algorithms. This method involves iteratively substituting a 

recurrence relation into itself, moving backward towards the initial 

conditions or base cases, until a pattern or closed-form solution 

emerges. 

 

                              T(n-1) + 1 when n>0   

    T(n)     =  

                              1              When n = 0   

 

Note— When solving a recurrence relation to determine the time 

complexity, our goal is to address the initial term given in T(…), which 

represents a sub-problem. We utilize the base condition to simplify the 

T() term. 

 

T(n) = T(n-1) + 1   ………………….(1) 

 

T(n-1)= T(n-2) + 1 

 

T(n-2) = T(n-3) +1  

 

Back substitute the value of T(n-1) into (1) 

T(n) = [ T(n-2) + 1] + 1 
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T(n) = T(n-2) + 2 …………………(2) 

 

Now, substitute the value of T(n-2) into (2) 

T(n) = [T(n-3)+1]+2 

T(n) = T(n-3)+3 …………………………(3) 

                . 

                . 

                . 

          = T(n-k)+k                   [ Assume n-k = 0 so,  n= k ] 

          =  T(n-n)+n 

          = T(0) + n                     [ T(0) = 1 is given ] 

          = 1+ n 

T(n) = O(n) 

 

 

                              T(n-1) + n   when n>0   

    T(n)     =  

                              1                  When n = 0   

 

T(n) = T(n-1) + n …………………………(1) 

T(n-1)= T(n-2)+ n-1 

T(n-2)= T(n-3) + n-2 

Substituting the value of T(n-1) into (1) 

T(n)= [T(n-2)+(n-1)]+n 
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T(n)= T(n-2) + (n-1) + n …………………….(2) 

Substituting the value of T(n-2) into (2) 

T(n) = [ T(n-3) +(n-2) ] + (n-1)+n  

T(n) = T(n-3) + (n-2) + (n-1) +n ………………….(3) 

                      . 

                      . 

                      . 

T(n) =  T(n-k)+(n-(k-1))+ (n-(k-2))+. . . +(n-1) + n …………(4) 

Assume that n-k = 0 

Therefore  n = k  

In place of k, substitute “n” in the equation (4) 

T(n) = T(n-n) + (n –(n-1)) + (n- (n-2) + . . . (n-1) +n 

T(n) = T(0) + 1 +2 +. . .(n-1) + n 

T(n) = 1+ n(n+1)/2 

         = O(n2) 

 

Solve the recurrence using back substitution method : 

T(n) = 2T(n/2) +n               [previous year question] 

 

Base condition is not given in the question; therefore, we assume that 

when n=1 , it takes 1 unit of time. 
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T(n) = 2T(n/2) + n    ……………………………… (1) 

 

T(n/2)= 2T(n/4) + n/2 

T(n/4)= 2T(n/8) + n/4 

 

Substituting the value of T(n/2) into (1), we get 

T(n) = [ 2 ( 2T(n/4)+n/2)+ n]  

T(n)  =  22 T(n/4) + 2n ……………………………………(2) 

 

Substituting the value of T(n/4) into (2), we get 

T(n) = [4 (2T(n/8) + n/4) + 2n 

        = 23 T(n/8) + n + 2n 

       = 23 T(n/23) + 3n…………………………………………(3) 

                . 

                . 

                . 

     = 2k T(n/2k) + k*n ………………………………………….(4) 

Assume that (n/2k) = 1, then  

2k  = n  

log2n = k 

 T(n) = 2log
2

n T(n/n) + n*logn 

T(n) = n T (1) + n logn                   [ Since 2
log

2
n = n] 
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         = n+ nlogn= O(nlogn) 

V.V.I 
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V.V.I 
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2. Recursion-Tree Method for Solving Recurrences 

 

Type- 01 (Reducing function) 

Steps: 

1. Make T(n) the root node. 

2. Draw the tree for two to three levels to calculate the cost and 

height. 

3. If the cost at each level is the same, multiply it by the height of 

the tree to determine the time complexity.  

4. If the cost at each level is not the same, try to identify a sequence. 

The sequence is typically in an arithmetic progression (A.P.) or 

geometric progression (G.P.). 
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44 
 

Type-2 ( Dividing function- when there is more than one sub-problem, 

and the size of each sub-problem is the same.) 

Steps: 

1. Make the last term the root node. 

2. Draw the tree for two to three levels to calculate the cost and 

height. 

3. If the cost at each level is the same, multiply it by the height of 

the tree to determine the time complexity.  

4. If the cost at each level is not the same, try to identify a sequence. 

The sequence is typically in an arithmetic progression (A.P.) or 

geometric progression (G.P.). 

Note: If the size of sub-problem is only one, follow Type-1 approach 

only. 
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                                     Q. Solve the following recurrences: 

i. T (n) = T (n-1) + n4      using iteration method 

ii. T(n) = 3T(n/4) + cn2   using recursion tree method 
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Q Explain Binary Search Algorithm. Also solve its recurrence relation.  

 It is a searching algorithm used in a sorted array by repeatedly dividing 

the search interval in half. The idea of binary search is to use the 

information that the array is sorted and reduce the time complexity to 

O(Log n).  
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3 Master Theorem to solve recurrences 

 

Note—Effective for the university exam 

 

Question. State Master Theorem and find time complexity for the 

recurrence relation T(n) = 9 T(n/3) +n. 

Solution— Let a >= 1 and b > 1 be constants, let f(n) be a function , and 

let T(n) be defined on the nonnegative integers by the recurrence 

T(n)  = aT(n/b) + f(n) 

Where we interpret n/b to mean either floor value of (n/b) or ceiling 

value of (n/b). Then T(n) has the following asymptotic bounds: 

1. If f(n) = O(nlog
b

a-ϵ ) for some constants ϵ >0, then T(n)= ɵ(nlog
b

a) 

2. If f(n) = ɵ(nlog
b

a), then T(n) = ɵ(nlog
b

a logn) 

3. If f(n) = Ω(nlog
b

a+ϵ ) for some constant ϵ >0, and if af(n/b) <= c(f(n)) 

for some constant c <1 and all sufficiently larger n, then T(n)= 

ɵ(f(n)). 

 

Given: a= 9, b= 3 and f(n) = n  

Now we need to calculate nlog
b

a as it’s the common term in all 3-cases of 

the Master Theorem. 

nlog
b

a = nlog
3

9 = n2 ( It is clearly bigger than f(n), which is n) 

Case-1 can be applied; therefore, T(n) = ɵ(n2). 

Question. State Master Theorem and find time complexity for the 

recurrence relation T(n) = T(2n/3) +1. 
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Solution— Given: a = 1, b= 3/2 and f(n) =1  

Now we need to calculate nlog
b

a as it’s the common term in all 3-cases of 

the Master Theorem. 

nlog
b

a = nlog
3/2

1 = n0 = 1  [ Since, log1 = 0] 

As the result of nlog
b

a is equal to f(n) in the question, we can apply the 

second case ( for tight bound/average case). 

 

T(n)= T(n) = ɵ(nlog
b

a logn) 

        =T(n) = ɵ(logn) 

 

Question. State Master Theorem and find time complexity for the 

recurrence relation T(n) = 3 T(n/4) +nlogn. 

Solution— Given: a = 3, b= 4 and f(n) =nlogn  

Now we need to calculate nlog
b

a as it’s the common term in all 3-cases of 

the Master Theorem. 

nlog
b

a = nlog
4

3 = n0.793 

Since, nlogn  = Ω(nlog
4

3+ ϵ) where ϵ = 0.2 

 

 

Case-3 applies if we can show that  

 

af(n/b) <= c.f(n) 

3(n/4)log(n/4) <= (3/4)nlogn  for c = ¾  
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By case-3, T(n) = ɵ(nlogn) 

 

Note—Effective for the competitive exam 
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4. Substitution method for solving recurrences [ Forward 

Substitution method] 
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Q. Solve by substitution method ( Forward substitution method): 

a. T(n) = n* T(n-1)  if n>1 ; T(1) =1             ……  [A] 

 

Solution: 

Step 1:  Guess the solution  

T(n) = O ( nn ) ……. [1]   [ You can easily get it using iteration method.] 

 

Step 2:  Now, we have to prove that our assumption is true using 

property of mathematical induction. 

 

T(n) <= c. nn     from equation-[1] 
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Now, put n=1 in equation-[1] 

   T(1) <= c. 1  

   1 <= c.1  [ True for c>=1 , n0 = 1 ] 

 

It should be true 1, 2, 3, . . ., k 

T(k) <= c. kk  [ 1<= k <= n] 

When we move forward from 1 to n somewhere we get k = n-1. 

T(n-1) <= c. (n-1)(n-1)   …………………… [2]   

 

Now, put the value of T(n-1) into equation [A]. 

T(n) <= n * c. (n-1)(n-1)  

        <= c * n * (n-1) (n-1)  

        <= c * n * n n      [ if n-1 = n ]  

        <=  cn * nn      [ we consider only bigger term] 

        <= n * nn           [ We remove constant term(s)] 

        <= nn+1 

            <= nn 

Hence, T(n) = O(nn) proved  
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Sorting Algorithms and their Analysis 
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Shell-Sort Algorithm 
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Quick Sort Algorithm 
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V.V.I 
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Apply Merge sort on the array { 9, 6, 5, 0, 8,5} and also 

write down its time complexity 
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Heap Sort Algorithm 
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Q What do you understand by a stable sort? Name two stable sort 

algorithms.  

A sorting algorithm is said to be stable if two objects having equal keys appear in 
the same order in sorted output as they appear in the input data set. For 
example, Insertion and Counting sorts.  

Q. Define in-place sorting algorithm. 

It is a type of sorting algorithm that rearranges the elements of an array or list 

without requiring additional memory space proportional to the size of the input. 

Q Describe the difference between the average-case and the worst-case analysis 

of algorithm, and give an example of an algorithm whose average-case running 

time is different from worst case analysis. 

Q. Compare sorting algorithms in a tabular form. 

     

 

Sorting in linear time O(n) 
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[Non-comparison-based sorting algorithms] 

Non-comparison-based sorting algorithms do not rely on pairwise comparisons 

between elements to determine their relative order. Instead, they exploit 

properties of the input data, such as the range of values, to achieve efficient 

sorting. These algorithms are often used when the range of possible input values is 

known and limited, making them more efficient than comparison-based algorithms 

in certain scenarios. Here are some common non-comparison-based sorting 

algorithms: 

1. Count sort 

2. Radix sort 

3. Bucket sort 

 

Counting-Sort Algorithm 

 

Counting Sort assumes that each of the "n" input elements is an integer in the range 

from 0 to "k," where "k" is an integer representing the range of values. 
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Q. Write down the Counting-Sort algorithm and illustrate the   

operation of Counting Sort on the array A = {6, 4, 8, 4, 5, 1}. 

 

Solution:  
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Radix-Sort Algorithm 
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Bucket-Sort Algorithm 
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Unit-02 

  

                                             Red-Black Tree 

It is a Binary Search Tree (BST) with one extra bit of storage per node: its 

color, which can be either red or black. 

Properties of RB Tree: 

1. Every node is either red or black. 

2. The root is black. 

3. Every leaf node (NIL) is black. 

4. If a node is red, then both its children are black. It means we need 

to avoid red-red (RR) conflict. 

5. For each node, all simple paths from the node to descendant 

leaves contain the same number of black nodes. 
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                               Fig – Red Black Tree 

Q1. Explain various rotations in an RB Tree. 

We have four types of rotations in RB tree like AVL tree: 

1. Left-Left (LL) problem: Needs a single right rotation 

2. Right-Right (RR)  problem : Needs a single left rotation 

3. Left-Right (LR) problem: Needs one left and then one right 

rotations. 

4. Right-Left (RL) problem: Needs one right and one left rotations. 

 

Note: We have to recolor only those nodes which are involved in 

rotation. When dealing with RL or LR rotation, we have to recolor only 

last rotated nodes. 
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Q2. Compare the properties of  AVL tree with RB Tree. 

 
 

Q3. What are advantages of an RB Tree? 

Advantages: 

Balanced Structure: Ensures efficient operations (O(log n)) by self-

balancing the tree. 

Predictable Performance: Rules maintain consistent performance 

regardless of data. 

Fast Insertions/Deletions: Efficient for frequent changes. 

Sorted Order: Supports sorted data and range queries. 

Search Efficiency: Quick search operations due to balanced 

structure. 
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Q4. Write an algorithm for insertion of keys into an RB Tree and 

also insert the following keys <5,16,22, 25, 2,10,18,30,50,12,1> 

into an empty RB Tree. 

 

Algorithm for insertion 

1. If the tree is empty, create a new node as the root node with 

the color “black”. 

2. If the tree is not empty, insert the new node with the color 

“red”. 

3. If the parent of the new node is “black”, exit.  

4. If the parent of new node is “red”, check the color of parent’s 

sibling (the uncle of the newly inserted node). 

 

4(a) If its color is black or Null (no uncle), perform suitable 

rotations and recolor only the last rotated nodes. 

4(b) If its (uncle’s) color is red, recolor the following nodes: 

1. Uncle 

2. Parent 

3. Grandfather (if it is not the root of the tree). 

Check if the tree is an RB tree or not. If not, consider the grandfather as 

a newly inserted node and repeat step -4.  
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Q4. Explain about double black node problem in RB tree. 

 When a black node is deleted and replaced by a black child, the child is marked as 

double black. The main task now becomes to convert this double black to single 

black. 

Q5. Construct an RB Tree, and let h be the height of the tree and  n be 

the number of internal nodes in the tree. Show that h<= 2log2(n+1). 
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B-Trees 

A B-tree is a self-balancing m-way search tree with the following 

restrictions: 

1. The root node must have at least two children. 

2. Every node, except for the root and leaf nodes, must have at least ⌈m/2⌉ 

children. 

3. All leaf nodes must be at the same level. 

4. The creation process is performed bottom-up. 

Properties of m-way search tree: 

1. m (degree/order): Maximum number of children (or child pointers) 

2. m-1 keys               : Maximum keys per node  

3. All keys are arranged in ascending order. 
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Note— An m-way search tree, also known as an m-ary search tree, does not have 

strict height control during its construction. Depending on the order (m) and the 

specific keys inserted, an m-way search tree can grow to a height of "n," where "n" 

is the number of keys inserted into the tree. To address this issue and maintain a 

more balanced structure, B-trees were introduced. B-trees are a type of m-way tree 

with specific restrictions and properties designed to keep their height under control 

and ensure balanced branching. 

Insertion of keys in a B-tree 

Type-01 We are given some keys with a degree. 

 For example: insert the keys: 12, 21, 41, 50, 60, 70, 80, 30, 36, 6, 16 into 

an empty B-tree with degree 4. 

 

Create a table following the properties of the B-tree 

 

 

 

Type-02 We are given some keys with a maximum degree. 
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For example: Using the maximum degree m= 4, insert the following 

sequence of integers 10, 25, 20, 35, 30, 55, 40, 45, 50, 60, 75, 70, 65, 80, 

85,90 into an initially empty B-Tree. 

 

Create a table following the properties of the B-tree 
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Type-03 We are given some keys with a minimum degree. 

For example: Using the minimum degree t= 3, insert the following 

sequence of integers 10, 25, 20, 35, 30, 55, 40, 45, 50, 60, 75, 70, 65, 80, 

85,90 into an initially empty B-Tree. 

 

Create a table following the properties of the B-tree 

 

Note— The maximum number of keys that can be stored in a particular 

node of a B-tree with a minimum degree of t is 2t-1. Therefore, based 

on the question, the maximum number of keys per node is 5. 
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Note—The simplest B-tree occurs when t=2. Every internal node then 

has either 2, 3, or 4 children, and we have a 2-3-4 tree. 

 

                              

Q. Using the minimum degree t= 3, insert the following sequence of 

integers 10, 25, 20, 35, 30, 55, 40, 45, 50, 60, 75, 70, 65, 80, 85,90, 

100,110,120, 112, 114, 120 into an initially empty B-Tree. 

Solution—   
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Q. Using the minimum degree t= 2, insert the following sequence of 

integers 12, 25, 42, 50, 60, 70, 80, 28, 36, 14, 18 into an initially empty B-

Tree.  

Solution—  
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s  
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Deletion of keys in a B-tree 
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Q. Using the minimum degree t = 2, insert the following sequence of 

integers: 12, 25, 42, 50, 60, 70, 80, 28, 36, 14, 18 into an initially empty 

B-Tree. Now, delete 60, 18, and 14. 
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Q. Why don’t we allow a minimum degree of t=1 in B-trees? 

Allowing a minimum degree of t=1 in B-trees would fundamentally change their 

structure and behavior in ways that make them less efficient and undermine some 

of their key advantages. The choice of a minimum degree of t>=2 in B-trees is a 

deliberate design decision to maintain the desirable properties and performance 

characteristics that make B-trees valuable for a wide range of applications involving 

sorted data storage and retrieval. 

Q. Show all legal B-Trees of minimum degree 2 that represent <1,2,3,4,5> 

 

Q. 
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Q7. Define Binomial Tree and mention its properties. 
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Q8. Define Binomial heap, write an algorithm for union of two Binomial 

heaps and also write its time complexity. 
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Time complexity : O(Log(n)) 

Q9. Design a Binomial heap for a given A,  A= [ 7, 2, 4, 17, 1, 11, 6, 8,15,10, 

20] 

Steps: 

1. Create a Binomial heap H1 containing a new element (key). 

2. Apply union operation between the two Binomial min heaps H and 

H1. 
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Q. Write down the algorithm for Decrease key operation in Binomial 
Heap also write its time complexity. 

 

BINOMIAL-HEAP-DECREASE-KEY(H, x, k) 

1  if k > key[x] 

2      then error "new key is greater than current key" 

3  key[x] = k 

4  y = x 

5  z = p[y] 

6  while z != NIL and key[y] < key[z] 

7      do exchange key[y] and key[z] 

8          If y and z have satellite fields, exchange them, too. 

9          y = z 

10         z = p[y] 

Running time T(n) = O(logn) 
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Q10. Define Fibonacci heap and also compare the complexities of Binary 

heap, Binomial heap and Fibonacci heap. 
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Q11. Explain the extracting minimum node operation of Fibonacci heap 

with example. 

 

This operation is accomplished by deleting the minimum key node and 

then moving all its children to the root list. It uses the process called 

“consolidate” to merge the trees having same degree. 

 

Steps: 

1. Delete the minimum node . 

2. Join the root list of deleted node’s descendants to the root list of 

original root list. 

3. Traverse left to right in the root list 

3.a Find new minimum. 

3.b Merge trees having same degree. 

 4. Stop after having every tree  with unique degree. 
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Example- 
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Q12. Define Skip List and Trie with example. 
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Q. Explain the Search operation in Skip list with a suitable example. Also 

write its algorithm. 
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Q. Insert the following strings into the initially empty trie: DOG, DONE, CAT, CAN, RIGHT, DO, 

JUG, DAA, CA, CAME. Then delete the strings DO, CAME, and RIGHT from it. 
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Q14. Insert strings < ten, test, car, card, nest, next, tea, tell, park, part, 

see, seek, seen> in an empty Trie data structure and also compress the 

Trie. 
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Unit-03 

 

Divide and Conquer: It is one of the algorithm design techniques in 

which the problem is solved using the divide, conquer and combine 

strategy. 

Divide: This involves dividing the problem into smaller sub-problems. 

This step generally takes a recursive approach to divide the problem 

until no sub-problem is further divisible.  

Conquer: This involves solving sub-problems by calling them recursively 

until solved. 

Combine: When the smaller sub-problems are solved, this stage 
recursively combines them until they formulate a solution to the original 
problem. 

 

 

 

Following are some standard algorithms that follow Divide and 

conquer approach: 

 

1. Quick sort 

2. Merge sort 

3. Strassen’s algorithm for matrix multiplication 

4. Convex Hull algorithm 

5. Closest pair of points  
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Q1. Describe the Convex-Hull problem with a suitable example. 

Given a set of points, a Convex Hull is the smallest convex polygon 

containing all the given points. 

 

 

 

 

 

 

Quickhull Algorithm [ Divide and Conquer Algorithm] 

Let P[0…n-1] be the input array of points. Following are the steps for 

finding the convex hull of the points. 

1. Find the point with the minimum X-coordinate. Let’s say, min_x and 

similarly the point with the maximum X-coordinate, max_x. 

2. Make a line joining these two points, say L. This line divides the 

whole set into two parts. Take both parts one by one and proceed 

further. 
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3. For a part, find the point P with the maximum distance from line L. 

P forms a triangle with the points min_x and max_x. 

4. The above step divides the problem into two sub-problems, which 

are solved recursively. Now, the line joining the points P and min_x 

and the line joining the points P and max_x are new lines, and the 

points residing outside the triangle are the set of points. Repeat 

line number 3 till there is no point left with the line. Add the 

endpoints of this point to the convex hull.  

 

 

 

 

 

 

 

 

Example: 

Find a convex hull of a set of points given below. 



164 
 

 



165 
 

 



166 
 

                                          Matrix Multiplication 
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V.V.I 

 



170 
 

 

 

Q2. Compare and contrast BFS and DFS. How do they fit into the 

decrease and conquer strategy? 

 

Decrease and Conquer Strategy: The name ‘divide and conquer’ is used 

only when each problem may generate two or more sub-problems. The 

name ‘decrease and conquer’ is used for the single sub-problem class. 

The Binary search rather comes under decrease and conquer because 

there is one sub-problem. Other examples are BFS and DFS. 

 

BFS (Breadth First Search ) 

1. It is a traversal approach in which we first walk through all nodes on the same 

level before moving on to the next level. 

2. It uses  Queue data structure.   

3. It is more suitable for searching vertices closer to the given source. 

4. It requires more memory. 

5. It considers all neighbors first and therefore not suitable for decision-making 

trees used in games or puzzles. 

DFS (Depth First Search) 

1. It is also a traversal approach in which the traversal begins at the root node and 
proceeds through the nodes as far as possible until we reach the node with no 
unvisited nearby nodes. 
 

2. It uses stack data structure. 
 
3. It is more suitable when there are solutions away from source. 

 
4. It requires less memory. 
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5. It is more suitable for game or puzzle problems. We make a decision, and the 

then explore all paths through this decision. And if this decision leads to win 
situation, we stop. 
  

 

Greedy Method of Algorithm Design 

As the name suggests it builds up a solution piece by piece locally, always 

choosing the next piece that offers immediate benefit. The main function 

of this approach is that the decision is taken on the basis of the currently 

available information. 

Note— A greedy algorithm always makes the choice that looks best at 

the moment. That is, it makes a locally optimal choice in the hope that 

this choice will lead to a globally optimal solution. 

 

Pseudo code of Greedy Algorithm 

Greedy(arr[], n) 
{   
   Solution = 0; 
   for i=1 to n 
    { 
         x = select (arr[i]); 

            if feasible(x) 
             { 
               Solution = solution + x; 
             } 
      } 

 }    
 



172 
 

Initially, the solution is assigned with zero value. We pass the array and 
number of elements in the greedy algorithm. Inside the for loop, we 
select the element one by one and checks whether the solution is 
feasible or not. If the solution is feasible, we add it to the solution. 

Applications of Greedy Algorithm 

o It is used in finding the shortest path. 

o It is used to find the minimum spanning tree using the prim's 
algorithm or the Kruskal's algorithm. 

o It is used in a job sequencing with a deadline. 

o This algorithm is also used to solve the fractional knapsack 
problem. 

Let’s try to understand some terms used in the optimization problem. 

Suppose we want to travel from Delhi to Mumbai as shown below: 

                       Problem (P): Delhi(D) → Mumbai (M) 

There are multiple solutions to go from D to M. We can go by walk, bus, 

train, airplane, etc., but there is a constraint in the journey that we have 

to travel this journey within 16 hrs. If we go by train or airplane then only, 

we can cover this distance within 16 hrs. Therefore, we have multiple 

solutions to this problem, but only two solutions satisfy the constraint, 

which are called feasible solutions. 

If we say that we have to cover the journey at the minimum cost, then 

this problem is known as a minimization problem.  

Till now, we have two feasible solutions, i.e., one by train and another 
one by air. Since travelling by train cost us minimum, it is an optimal 
solution. The problem that requires either minimum or maximum result 
is known as an optimization problem. Greedy method is one of the 
strategies used for solving the optimization problem. A Greedy algorithm 
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makes good local choices in the hope that the solution should be either 
feasible or optimal. 

 

Q3. Describe optimization problem, feasible solution and optimal 

solution. 

 

Optimization problem – An optimization problem refers to a 

computational problem where the goal is to find the best solution from 

a set of possible choices (called feasible solutions). The objective is to 

either maximize or minimize a specific criterion while adhering to a set 

of constraints. We have the following methods to solve optimization 

problems: 

1. Greedy 

2. Dynamic programming 

3. Branch and bound  

Feasible solution -  Most of the problems have ‘n’ inputs and require us 

to obtain a subset that satisfies some constraints. Any subset that 

satisfies these constraints is called a feasible solution. A problem can 

have many feasible solutions. 

           “A feasible solution satisfies all constraints of the problem.” 

Optimal solution -  It is the best solution out of all possible feasible 

solutions. 
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Q4. What is principle of optimality? 

A problem is said to satisfy the Principle of Optimality if the sub solutions    
of an optimal solution of the problem are themselves optimal solutions 
for their subproblems. For example, the shortest path problem satisfies 
the principle of optimality. 

 

Q5. Differentiate between Greedy approach and Dynamic programming 
approach. 

Greedy Approach: 

1. We make a choice that seems best at the moment in the hop that 
it will lead to global optimal solution. 

2. It does not guarantee an optimal solution. 
3. It takes less memory. 
4. Fractional Knapsack is an example of Greedy approach. 

Dynamic Programming Approach: 

1. we make a decision at each step considering current problem 
and solution to previously solved sub problem to calculate 
optimal solution. 

2. It guarantees an optimal solution. 
3. It takes more memory. 
4. 0/1 Knapsack is an example of Dynamic programming approach. 
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Q6. Find the optimal solution for the fractional knapsack problem 
with n=7 and a knapsack capacity of m=15, where the profits and 
weights of the items are as follows: (p1, p2, . . . , p7) = (10, 5, 15, 7, 
6, 18, 3) and (w1, w2, . . . , w7) = 2, 3, 5, 7, 1, 4, 1, respectively. 
 
 
                         Capacity of knapsack(bag) = 15 
 
We have to put objects in the bag (knapsack) such that we should get 
maximum profit.  
 
Selection of the object can be entirely (x=1), in fraction ( 0<=x<=1) or 
not  selected ( x=0). 
 
 
  

Object Profits Weights P/W 

1 10 2 5 

2 5 3 1.6 

3 15 5 3 

4 7 7 1 
5 6 1 6 

6 18 4 4.5 

7 3 1 3 

 
We select an object according to its P/W ratio. An object with 
maximum P/W ratio will be selected first and then second maximum 
P/W ratio and so on. 
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Remaining = Capacity of Knapsack- Weight of the selected object  
 

 
Final table according to decreasing P/W ratio 

Objects Profits(P) Weights P/W Remaining Selection(X) 

5 6 1 6 15-1=14 1  

1 10 2 5 14-2=12 1 

6 18 4 4.5 12-4=8 1 

3 15 5 3 8-5=3 1 

7 3 1 3 3-1=2 1 

2 5 3 1.66 2-2=0 2/3 
4 7 7 1 0 0 

 
Object-4 is not selected; therefore, value of x for this object is zero. 
Object-2 is selected only 2 units out of 3 units, so its value for x is 
(2/3). 
 
                                               Profit = Xi * Pi 

 

Profit = 1* 6 + 1*10 + 1*18 + 1*15 + 1*3+ (2/3) * 5 + 0*7 
           = 6 + 10 +18+ 15+ 3+3.3 +0 
           = 55.3 
 

 

Job Sequencing with Deadlines Problem 
 
 
We are given a set of n jobs. Associated with job i is an integer deadline d i >= 0 
and a profit pi >0. For any job i, the profit pi is earned if and only if the job is 
completed by its deadline. The objective is to maximize the total profit by 
scheduling jobs in a way that they meet their deadlines.  
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The constraints in this problem include: 
 
Each job has a specific deadline by which it must be completed. 
Each job takes one unit of time to complete. This one unit of time may be 
equal to one hour, one day, one week, or one month. 
Only one machine is available for processing jobs. 
We can only work on one job at a time. 
We cannot exceed the specified deadlines. 
No preemption. 

 
Q. Using a greedy method, find the optimal solution for the “job 

sequencing problem with deadlines” with n = 4, where (p1, p2, p3, 
p4) = (100, 10, 15, 27) and (d1, d2, d3, d4) = (2, 1, 2, 1). 
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Q. Identify all solutions satisfying the constraints for the “job 
sequencing with deadlines” problem with n = 4, where (p1, p2, p3, 
p4) = (100, 10, 15, 27) and (d1, d2, d3, d4) = (2, 1, 2, 1). 
 
Solution— We know that we can have multiple solutions for an 
optimization problem, but feasible solutions are only those that 
satisfy all constraints of the problem. Therefore, we need to identify 
all feasible solutions for this problem.  
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Activity Selection Problem 

 
The activity selection problem involves selecting a maximum number of non-
overlapping activities from a given set of activities, each with a start time and 
finish time. The goal is to choose a set of activities that do not overlap in time 
and, therefore, can all be completed.  
 
The constraints in this problem include: 
 
You can only perform one activity at a time. 
The activities must be selected in a way that none of them overlap in time. 

 
Q. Using Greedy method, find an optimal solution to the activity 
selection problem with the following information: 
 

Activity A1 A2 A3 A4 A5 A6 A7 A8 

Start  1 0 1 4 2 5 3 4 

Finish 3 4 2 6 9 8 5 5 
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Solution—
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Q7. Define spanning tree and minimum spanning tree with an 
example. 
 
Spanning Tree – It is a subset of graph G having all its vertices covered 
with minimum possible number of edges. If there are ‘n’ vertices in 
an undirected connected graph, then every possible spanning tree 
out of this graph has “n-1” edges. It does not have a cycle. 
Minimum Spanning Tree (MST) – An MST for a weighted, connected, 
undirected  graph is a spanning tree having a weight less than or equal 
to the weight of every other possible spanning tree.   
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Example:  
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Prim’s Algorithm for finding an MST 
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Q8. Give an example of an MST using Prim’s algorithm for a 
connected graph. 
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Kruskal’s Algorithm for finding an MST 
 

Algorithm: 
 

1. Sort all the edges in increasing order of their weight. 
  

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree 
formed so far. If cycle is not formed, include this edge. Else, discard it.  

 
3. Repeat step#2 until there are (V-1) edges in the spanning tree. 

 

Single Source Shortest-Paths Problem 

 

1. Dijkstra’s Algorithm (Greedy ) 
2. Bellman-Ford Algorithm (Dynamic) 

 

Given a graph G = (V, E), we want to find a shortest path from a given 
source vertex s ϵ V to each vertex v ϵ V. 
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1. Dijkstra’s Algorithm for Single Source Shortest Paths 

Dijkstra’s algorithm solves the single source shortest-paths problem on 
a weighted graph G = (V , E) for the case in which all edge weights are 
nonnegative. It works for directed as well as undirected graph. It may or 
may not work with negative edge weights. 

 

           

                             



193 
 

 



194 
 

 

 



195 
 

 



196 
 

Q. Apply the greedy single source shortest path algorithm on the graph 
given below. 
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2. Bellman-Ford Algorithm (Dynamic) 
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Unit-04 

 

Dynamic Programming 

 
It is one of the algorithm design techniques used to solve optimization 

problems. It is mainly an optimization over plain recursion. Wherever we 

encounter a recursive solution with repeated calls for the same inputs, we 

can optimize it using Dynamic Programming. The idea is to store the 

results of subproblems so that we do not have to re-compute them when 

needed later. This simple optimization reduces time complexities from 

exponential to polynomial. 

 

Principle of Optimality : The principle of optimality, developed by 

Richard Bellman, is the basic principle of dynamic programming. It states 

that in an optimal sequence of decisions, each subsequence must also be 

optimal. 

 

Memoization  :  It is the top-down approach (start solving the given 
problem by breaking it down) . If we want, we can use this approach in 
Dynamic programming as well, but we generally use iterative method 
(tabulation method), which is the bottom-up approach, in Dynamic 
programming.  
 
 
 
Let’s try to understand Dynamic Programming approach with a suitable example. 
 
 

Find Fibonacci term using plain recursion ( recursive program). 
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       Fibonacci series : 0  1   1   2   3  5  .   .   .   
                              Fn: 0  1   2   3   4   5 .   .   . (Fibonacci terms) 
       F3 term= 2 , F1 term=1 , F4 term=3, etc. 
 
 

      int fib(int n)                                 
       { 
           if(n<=1) 
             return n; 
          return fib(n-2) + fib(n-1); 
       } 
 
 

   n        if n<=1 

T(n) =        T(n-2) + T(n-1) +1  if n>1 

 

Time complexity ( Upper bound ) 

T(n) = 2T(n-1) + 1      [ Since T(n-1) is almost equal to T(n-2)] 

Using master method for decreasing functions, we get the time 

complexity O(2n) , which is exponential.  

 

Now, try to observe repeated recursive calls for the same argument 

(input value ) using a recursive tracing tree. 
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Count of Repeated Recursive calls in fig 1: 

fib(3) – 2 times repeated, fib(2) – 3 times repeated, fib(1) – 5 times 

repeated, and fib(0) -- 3 times repeated 

We have got repeated recursive calls for the same input. It makes this 

approach have exponential running time. It is where Dynamic 

Programming approach comes into the picture, which reduces time 

complexity drastically by avoiding repetitive computation for the same 

recursive call.   

Find Fibonacci term using memoization (Dynamic Programming 
Approach). 
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int F[20];     // Global array 
 
int fib(int n)      // Function definition  
      { 
 
           if(n <= 1) 
              return n; 
           if(F[n] != -1) 
              return F[n]; 
   
          F[n] = fib(n-2) + fib(n-1); // recursive call 
          Return F[n]; 
      } 
 
void main(void) 
  {   
     int  i, result=0;  
      
     for( i=0 ; i< 20 ; i++) 
           F[i] = -1; 
     result = fib(5); 
     printf(“%d”, result);   } 

From the above example, we can observe the following points: 

If we use memoization method to solve the same problem, we don’t 

have to go for repetitive computation for the same recursive calls. It 

means for fib(5), we have to compute recursive function calls only 6 

times ( fib(5), fib(4), fib(3), fib(2), fib(1) and fib(0)).  

If we generalize it for fib(n), the number of recursive calls will be n+1.It 

means time complexity will be O(n)- linear. 

 

Note – We generally don’t use the memoization method in Dynamic 

programming as it consumes more space due to recursion.  
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Note – Memoization follows top-down approach. 

 

Iterative Method (tabulation method) for the Same Problem [ 

bottom-up approach] 

int F[20];  

int fib(int n) 
{  
       if(n <=1) 
        {  
         return n; 
        } 
  F[0]=0; 
  F[1]=1; 
  for(int i = 2; i<=n; i++) 
      { 
            F[i]= F[i-2] + F[i-1]; 
      } 
return F[n]; 
} 
 

1.  0/1 Knapsack Problem 

The knapsack problem deals with putting items in the knapsack based 
on the value/profit of the items. Its aim is to maximize the value inside 
the bag. In 0-1 Knapsack, you can either put the item or discard it; there 
is no concept of putting some part of an item in the knapsack like 
fractional knapsack. 
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Q. Find an optimal solution to the 0/1 Knapsack instances n=4 and 
Knapsack capacity m=8 where profits and weights are as follows p= {1, 
2, 5, 6} and w = {2, 3, 4, 5} 

 

Note – If weights are not given in the increasing order, then arrange 
them in the increasing order and also arrange profits accordingly. 

 

The matrix (mat[5][9]) will contain 9 columns ( as capacity (m) = 8 is 

given) and 5 rows (as n= 4 is given) 

 

   Pi  = profits 

   Wi = weights  

    i =   Objects 

 

 

 Formula to fill out cells :   mat[i, w] = max ( mat[i-1, w], mat[i-1, w-weight[i]+ p[i])        

 

Short-cut to fill the table 

1. Fill the first row and the first column with zero. 

 

2. For the first object, check the weight (wi) of the first object, which 

is 2. We have capacity w=2, so place profit of this object in the cell 

having capacity of 2 units (mat[1][2]=1). So far, we have only one 

object to consider , so we can put the first object (i = 1) having 2 

units of weight (w1 = 2 ) in the knapsack having capacity (w)  
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3,4,5,6,7 and 8 units. Therefore, fill mat[1][3], mat[1][4], mat[1][5], 

mat[1][6], mat[1][7] and mat[1][8] with 1. 

 

  

3. For the cell(s) left side of the current cell, we just consider the 

maximum value between left side and above of the current cell. For 

example, for the left side of mat[1][2], we need to pick 

max(mat[1][1], and mat[0][2]), which is 0. Therefore, place zero in 

the mat[1][1]. 

  

4. For the second object, weight is given 3 units. Now, we can consider 

two objects ( 1 and 2) together. The second object having 3 units of 

weight can be placed in the cell [2][3] having 3 units of capacity. 

Both objects together have 5 units of weight, which can be placed 

in the cells [2][5], [2][6], [2][7] and [2][8] having 5 units of capacity. 

For the cell [2][2], pick max(mat[2][1], mat[1][2]) which is 1. And 

follow the same for the cell [2][4]. 

 

5. For the third object, 4 units of weight is given. Now, we can 

consider three objects (1,2, and 3 objects) together . Weight of the 

third object is 4 units , so we can place its profit (5) in the cell [4][4] 

having 4 units of capacity. Objects 2 and 3 together have 7 units of 

weight and 7 units of profit (5+2), so we can place them in the cell 

[3][7]  having 7 units of capacity. Object 1 and 3 together have 6 

units of weight, so we can place them in the cell [3][6] having 6 

units of capacity. To fill out remaining cells , follow above steps. 

 

Maximum profits = 8  ( placed in  the last cell of the matrix ) 
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Selection of objects Xi = X1  X2  X3   X4  ( 0 1 0 1 ) 

Only objects 2 and 4 have been placed in the knapsack to gain 

maximum profit. 

               

 

 
  Pi   Wi        0 
  1    2        1 
  2    3        2 
  5    4        3 
  6    5        4 

 
 

  0        1      2       3       4       5       6      7        8  

0 0          0 0 0 0 0 0 0 

0 0 1 1 1 1 1 1 1 

0 0 1 2 2 3 3 3 3 

0 0 1 2 5 5 6 7 7 

0 0 1 2 5 6 6 7 8 
 

2. Single Source Shortest Path using Bellman-Ford Algorithm (    

Dynamic Programming) 

   Kindly refer unit-03 notes 

 

3. All Pairs Shortest Path ( Floyd-Warshall Algorithm) 

 

Apply Floyd-Warshall algorithm on the below graph:                       

                     3 

 

 

                                    8 

 

 

 7          2                    5                                             2 

 

                                                1 

Instances/

Objects (i) 

Capacity(w) 

1 1 

1 1 
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4. Matrix Chain Multiplication Problem  

 
 
We are given n matrices A1, A2, …. , An and asked in what order these 
matrices should be multiplied so that it would take a minimum number of 
computations to derive the result. 

 

Two matrices are called compatible only if the number of columns in the first 
matrix and the number of rows in the second matrix are the same. Matrix 
multiplication is possible only if they are compatible. Let A and B be two 
compatible matrices of dimensions p x q and q x r. Each element of each row 
of the first matrix is multiplied with corresponding elements of the appropriate 
column in the second matrix.  

The total number of multiplications required to multiply matrix A and matrix 
B is p x q x r. 

 

Suppose dimension of two matrices are :  

A1 = 5 x 4 

A2 = 4 x 3 

Resultant matrix will have 15 elements ( 5 rows and 3 columns ), and each 
element in the resultant matrix is derived using 4 multiplications. It means 60 
(5 x 4 x 3) multiplications are required.  

We cannot multiply A2 = (4 x 3) and A1 = (5 x 4) as column of A2 and row of 
A1 are different. Therefore, we can parenthesize A1 and A2 in one way only 
i.e., (A1 x A2). 
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Suppose dimension of three matrices are :  

A1 = 5 x 4 
A2 = 4 x 6 
A3 = 6 x 2      
 
 

1. In how many ways can we parenthesize them? 
2. How many multiplications are required to derive the resultant matrix? 

 
Formula to find out all valid combinations:      1/n   x   2(n – 1)Cn-1 

 

For n=3 

1/3   x   4C2 

1/3   x   4!  / 2! * (4 – 2)! 
1/3   x   4 x 3 x 2!  / 2! * 2! 
1/3   x   4 x 3 /  2! 
 = 2  ( We can parenthesize these three matrices only in two ways.) 
 

A. A1  ( A2 X A3) [ First possible order of multiplication ] 
(5 x 4) { (4 x 6 ) (6 x2 ) }   [ Here last two matrices require 48 multiplications]   
(5 x 4) ( 4 x 2)    [ Here two matrices require 40 multiplications ] 
Total 88 multiplications are required. 
 
 

B.  (A1 X A2 ) A3 [ Second possible order of multiplication ] 
{ (5 X 4) ( 4 X 6)} (6 X 2) 
(5 X 6) (6 X 2)    
Total 180 multiplications are required. 
 

The answer of both multiplication sequences would be the same in the resultant matrix 
having 5 rows and 2 columns, but the numbers of multiplications are different. This leads 
to the question- what order should be selected for a chain of matrices to minimize the 
number of multiplications to reduce time complexity? 
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Travelling Salesman Problem using Least Cost Branch and Bound 

In this Problem, a salesman must visits n cities. We can say that salesman wishes to make 

a tour, visiting each city exactly once and finishing at the city he starts from. The goal is 

to find a tour of minimum cost. We assume that every two cities are connected. We can 

model the cities as a complete graph of n vertices, where each vertex represents a city. 
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Unit-05 

 

 

                                              Problems 

 

 

                       Solvable  Unsolvable 

 

Solvable problems  -  A problem is said to be solvable if we know either 

there exists a solution or we are able to prove mathematically that the 

problem cannot be solved. 

 

Unsolvable problems – A problem is said to be unsolvable if we know 

neither there exists a solution nor we are able to prove mathematically 

that the problem cannot be solved. It means that in the future we will 

have all problems  currently in unsolvable domain in solvable domain for 

sure. For example, time complexity of Shell sort. 

 

 

                                                  Solvable Problems  

                                                                    

  

               Decidable   Problems      Undecidable Problems 
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Decidable Problems – A problem is said to be decidable if we are able to 

predict the time to solve the problem. It means that we have an 

algorithm as well as procedure to solve the problem. For example, 

sorting problem. 

Undecidable Problems – A problem is said to be undecidable if we are 

not able to predict the time to solve the problem. It means that we have 

only procedure to solve the problem but not an algorithm- which is used 

to predict the time. For example, if I ask ,” Is it possible to become the 

PM of India?” Answer is yes as we have a certain procedure to become 

the PM of India, but the time for this problem cannot be predicted. 

Q 1. Explain the complexity classes  P, NP, NPC and NP hard. How are 

they related to each other? 

P class –  P stands for polynomial. It is a set of problems which can be 

solved as well as verified in polynomial time. Linear Search O(n) , Binary 

Search O(logn), Merge Sort O(nlogn), Heap Sort O(nlog), etc., are the 

examples of algorithms which solve the problem in polynomial time.  

Note - Whatever algorithms we studied before dynamic programming 

belong to P class only. 

 

 

 

NP class –  NP stands for non-deterministic polynomial. It is a set of 

decision problems for which there exists a polynomial time verification 

algorithm. For example, for TSP ,  so far ( we don’t know about future), 

we have been unable to find out any polynomial time solution but then, 

given a solution of a TSP , we can verify it in polynomial time.    
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Note – If a problem belongs to P, then by default, it also belongs to NP 

because it can be verified in polynomial time, but vice versa does not hold 

good.   

                                                       

                                            NP 

                                  

                                           

                                                      

                                                   

 

 

 

As of now, NP minus P (NP-N) problems have been unable to be solved 

in polynomial time. We don’t know if these problems ( TSP, 0/1 

Knapsack, etc.) can be solved in polynomial time in the future or not. 
 
 

 

NP hard class – If every problem in NP can be polynomial time reducible 

to a problem “A”, then ‘A’ is called NP hard. If “A” could be solved in 

polynomial time, then by default, every problem in NP would become P. 

 

NP complete class – A problem is said to be NP complete if it is NP as 

well as NP hard. 

                              NP                                       NP hard 

 

                                                      NPC 

 

 

P 

P 
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        Fig - How P, NP, NP hard and NP complete are related to each other. 

Q2. What are approximation algorithms? What is meant by P (n) 

approximation algorithms? Discuss approximation algorithm for Vertex 

cover problem. 

An approximation algorithm is a way of dealing with NP-completeness for 
an optimization problem. This technique does not guarantee the best 
solution. The goal of the approximation algorithm is to come as close as 
possible to the optimal solution in polynomial time.  
 
Some examples of the Approximation algorithm : 

1. The Vertex Cover Problem 
2. Travelling Salesman Problem 
3. The Set Covering Problem 
4. The Subset Sum Problem 

 
 
If an algorithm reaches an approximation ratio of P (n), then we call it a P 
(n)-approximation algorithm.  
 
C = Cost of solution 
C*= Cost of optimal solution 

 
• For a maximization problem, 0< C < C*, and the ratio of C*/C (approximation 

ration) gives the factor by which the cost of an optimal solution is larger than 
the cost of the approximate algorithm. 

• For a minimization problem, 0< C* < C, and the ratio of C/C* gives the factor 
by which the cost of an approximate solution is larger than the cost of an 
optimal solution. 

 
Vertex Cover Problem –  Given an undirected graph, the vertex cover problem 
is to find minimum size vertex cover. Although the name is Vertex Cover, the set 
covers all edges of the given graph. It is a minimization problem because we have 
to find a set of vertices containing minimum number of vertices covering all edges 
of the given undirected graph. 
 
 



227 
 

Approximation algorithm for vertex cover problem 
 

 
 
 
[ Important for your university exam ] 
 
Example –  
 
                                   
                                                     
 
 
 
 
                                                                                 
 
                                                 
                                                                                       
  
 
 

 

Solution –  

Line 1.  C = solution set, which is empty in the beginning. 

Line 2. E ʹ = { (a, b), (a, c), (c, d), (b, d), (d, e)} // set of edges 

Line 3. While E ʹ  ! =  empty  

Line 4. Add an arbitrary edge from E ʹ in the solution set on line 5. 

Suppose we consider (a, b) from E ʹ, then  

e 

a 

c d 

b 
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Line 5.  C = C U { a, b }   

              C = { a, b }  // As of now solution set contains two vertices  

Line 6. Remove every edge incident on either a or b vertex. Therefore, 

Remove the following edges from E ʹ : 

(a, b), (b, c), and (a, c)  [ These three edges are incident on a and b. ]  

Now, E ʹ = { (c, d), (b, d), (d, e) }  

As E ʹ is not empty, add another arbitrary edge from E ʹ in the solution 

set C. Let’s take the edge (c, d) now. 

 C = { a, b, c, d} 

Using line number 6, remove every edge incident on either vertex c and 

d. Therefore, remove (c, d), (b, d) and (d, e) from E ʹ. E ʹ is empty now, 

so return C using line number 7, which contains four vertices a, b, 

c, and d. 

C is a set of minimum number of vertices, which covers all edges. 

Randomized algorithm – Algorithms using random numbers to decide 

what to do next anywhere in its logic is called Randomized Algorithm. For 

example, in Randomized Quick Sort, we use a random number to pick 

the next pivot (or we randomly shuffle the array). Typically, this 

randomness is used to reduce time complexity or space complexity in 

other standard algorithms. 

 

 

                               

 

 

https://practice.geeksforgeeks.org/courses/dsa-self-paced?utm_source=page&utm_medium=page&utm_campaign=dsa-self-paced
https://practice.geeksforgeeks.org/courses/dsa-self-paced?utm_source=page&utm_medium=page&utm_campaign=dsa-self-paced
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String Matching Algorithms 

String  matching  algorithms,  sometimes  called string searching  

algorithms, are  an important  class of string  algorithms that try  to find 

a  place where one  or  several strings ( also called pattern ) are found 

within a large string or text. For example,  

If  text array =  T [ 1 . . . n] and pattern array =  P[1 . . . m], then we have 

to find out P in T. Therefore, length of  P must be less than or equal to T. 

Both the pattern and searched text belong to ∑  (set of alphabets) , and 

it can contain either English alphabet ( finite set) or binary number ( 0 

and 1). 

 

We have the following algorithms to search a patter in the given text: 

1. Naive String-Matching Algorithm. 

2. Rabin-Karp String Matching Algorithm 

3. Finite Automata String Matching Algorithm 

4. Knuth-Morris-Pratt (KMP) String Matching Algorithm 

 

                      Naive String-Matching Algorithm 

 

The naive approach tests all the possible placement of Pattern P 

[1.......m] relative to text T [1......n]. We try shift s = 0, 1.......n-m 

successively and for each shift s. Compare T [s+1.......s + m] to P 

[1......m]. 
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Q. Reframe an algorithm for naive string matcher? 

 

Algorithm  

 NAIVE-STRING-MATCHER (T, P) 

 1. n ← length [T] 

 2. m ← length [P] 

 3. for s ← 0 to n -m  

 4. do if P [1...m] = T [s + 1....s + m] 

 5. then print "Pattern occurs with shift" s 

 

 

Find an example on the next page. 
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Rabin-Karp String Matching Algorithm 

 

The Rabin–Karp algorithm is a string-searching algorithm created by 

Richard M. Karp and Michael Rabin (1987) that uses hashing to find an 

exact match of a pattern string in a text. They suggest the hash function 

by choosing a random prime number q and calculate p[ 1 ….. m ] mod q. 

 

Algorithm 

 
 

Q 3. For q = 11, how many valid and spurious hits are found for 

the given Text and Pattern: 

 T = 3141592653589793 

 P =  26 

 

Solution –  

Step -1      Find  p mod q  

                   26 % 11 = 4  

 

Step -2      As “p” contains a 2 digits number, find mod 11 of each 2 

digits number from T as follows: 
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T = 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 

 

31 mod 11 =   9                      

14 mod 11 =   3 

41 mod 11 =   8 

15 mod 11 =   4 

59 mod 11 =   4 

92 mod 11=    4 

26 mod 11 =   4 

65 mod 11 =  10 

53 mod 11 =   9 

35 mod 11 =   2 

58 mod 11 =   3 

89 mod 11 =   1 

97 mod 11 =   9 

79 mod 11 =   2 

93 mod 11 =   5 

 

We consider only the number which gives us 4 after performing 

mod 11. Therefore, we have : 

 

15 mod 11 =   4    

59 mod 11 =   4   

92 mod 11=    4 

26 mod 11 =   4[ Here, 26 is equal to P (pattern), so it is a valid hit ] 

 

Three spurious hits in yellow and one valid hit in red. 
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Finite Automata Based String Matching Algorithm 

 

For a given pattern P, we construct a string-matching automaton in a 

preprocessing step before using it to search the text string. 

 

Algorithm  

 
 

For the pattern p =  abcd 

Prefixes of P = a, ab, abc, abcd  [ started from the left side ] 

Suffixes of P = d, cd, bcd, abcd  [ started from the right side] 

 

In order to specify the string-matching automaton corresponding 

to a given pattern p[1 . . . m], we first define an auxiliary function  σ 

, called suffix function. σ(x) is the length of the longest prefix of p 

that is also a suffix of x. For example,  

 

For the pattern p = abab  and x = aba 

σ(x)  =  ? 

 

“a” is a suffix of x as well as a prefix of p 

“aba” is a suffix of x as well as prefix of p. 

Length of “a” = 1 
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Length of “aba” = 3  

Therefore, σ(x)  =  3  

 

Example –  T = {abababacaba} and p ={ababaca} 

 

Solution –  Pattern length (m) = 7 

                    Number of states = m+1 = 8   

                    Q = { q0, . . ., q7 } 

                    ∑ = { a, b, c } 

 

Prefixes of P ={ a, ab, aba, abab, ababa, ababac, ababaca} 

 

Now, we can create a transition table for P using suffix function σ. 

 

Transition function δ : Q x ∑   → Q   

 

δ(q0 , a)  =  σ(a) = 1 ( since “a” is a prefix in P and a’s length is 1) 

δ(q0 , b)  =  σ(b) = 0 ( No transition as “b” is not a prefix in P) 

δ(q0 , c)  =  σ(c) =  0 ( No transition as “c” is not a prefix in P} 

 

δ(q1 , a)  =  σ(aa) = 1 (only single “a” is a prefix in P) 

δ(q1 , b)  =  σ(ab) = 2 ( “ab” is a prefix in P and its length is 2) 

δ(q1 , c)  =  σ(ac) =  0 ( No transition as “ac” is not a prefix in P) 

 

δ(q2 , a)  =  σ(aba) = 3 ( “aba” is a prefix in P and its length is 3) 

δ(q2 , b)  =  σ(abb) = 0 ( None of its suffixes ( b, bb and abb) is in P)  

δ(q2 , c)  =  σ(abc) =  0 ( None of its suffixes ( c, bc and abc) is in p) 
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δ(q3 , a)  =  σ(abaa) = 1 (Among suffixes (a,aa,baa,abaa) only “a” is 

a prefix in P and its length is 1) 

δ(q3 , b)  =  σ(abab) = 4 ( “abab” is a prefix in p and its length is 4) 

δ(q3 , c)  =  σ(abac)  = 0(among all suffixes ( c, ac, bac, abac), none 

is there in p; therefore, no transition) 

 

δ(q4 , a)  =  σ(ababa) = 5 (“ababa” is a prefix in p and its length is 5) 

δ(q4 , b)  =  σ(ababb) = 0 (among all suffixes , none is there in p) 

δ(q4 , c)  =  σ(ababc) = 0  (among all suffixes , none is there in p) 

 

δ(q5 , a)  =  σ(ababaa) = 1( among all suffixes ( a, aa, baa, abaa, 

babaa, ababaa) only “a” is prefix in p and its length is 1) 

δ(q5 , b)  =  σ(ababab) = 4 ( among all suffixes ( b, ab, bab, abab, 

babab, ababab) the longest prefix “abab” is in p and its length is 4) 

δ(q5 , c)  =  σ(ababac) = 6 (“ababac” is a prefix in p and its length is 

6) 

 

δ(q6 , a)  =  σ(ababaca) = 7 (“ababaca” is a prefix in p and its length 

is 7) 

δ(q6 , b)  =  σ(ababacb) = 0  

δ(q6 , c)  =  σ(ababacc)  = 0 

 

δ(q7 , a)  =  σ(ababacaa) = 1( among all suffixes( a, aa, caa,….) only 

“a” is in p) 

δ(q7 , b)  =  σ(ababacab) =2 (among all suffixes ( b, ab, cab, …) only 

ab is in p) 

δ(q7 , c)  =  σ(ababacac) = 0 (None of the prefixes is there in p) 
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Knuth-Morris-Pratt (KMP) String Matching Algorithm 

KMP is a linear time string matching algorithm. It uses concept of prefix and suffix 
to generate Π table. 

 

KMP-MATCHER (T, P) 

 1. n ← length [T] 

 2. m ← length [P] 

 3. Π← COMPUTE-PREFIX-FUNCTION (P) 

 4. q ← 0  // numbers of characters matched 

 5. for i ← 1 to n // scan S from left to right  

 6. do while q > 0 and P [q + 1] ≠ T [i] 

 7. do q ← Π [q]  // next character does not match 

 8. If P [q + 1] = T [i] 

 9. then q ← q + 1  // next character matches 

 10. If q = m              // is all of p matched? 

 11. then print "Pattern occurs with shift" i - m 

 12. q ← Π [q]    // look for the next match 

 

COMPUTE- PREFIX- FUNCTION (P) 

 1. m ←length [P]  //'p' pattern to be matched 

 2. Π [1] ← 0 

 3. k ← 0 

 4. for q ← 2 to m 

 5. do while k > 0 and P [k + 1] ≠ P [q] 

 6. do k ← Π [k] 

 7. If P [k + 1] = P [q] 

 8.     then k← k + 1 

 9. Π [q] ← k 

 10. Return Π 
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Q 4. Compute the prefix function Π for the pattern 

ababbabbabbababbabb when the alphabet is  ∑ = { a, b }. 

 

Π – It is also called the longest prefix which is same as some suffix 

(LPS). 

 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

p a b a b b a b b a b b a b a b b a b b 

Π       0 0 1 2 0 1 2 0 1   2 0 1 2 3 4 5 6 7 8 

       

Note – Use any short-cut trick to prepare LPS or Π table in the exam. 

 

                                                   Fast Fourier Transform (FFT) 

 

An FFT algorithm computes the discrete Fourier transform (DFT) of a 

sequence or its inverse DFT in time O(nlogn). 

 

 

 

 

 

 

All the best       


