
1

Design and Analysis of Algorithm

KCS503

Instructor: Md. Shahid

2

Preface

Dear AKTU University Students,

I am excited to present these comprehensive notes for the "Design

and Analysis of Algorithms" course tailored specifically for your

academic journey. These notes aim to serve as a valuable companion,

offering clear explanations, insightful examples, and practical insights

to aid your understanding of algorithmic principles. Whether you're

preparing for exams or deepening your grasp of key concepts, these

notes are crafted to enhance your learning experience. Wishing you a

successful and enriching exploration of algorithm design.

Best regards,

Md shahid (Assistant professor, MIET, MEERUT)

2nd edition

Year-2023

The author can be reached at shahid.55505@gmail.com.

3

Unit-01

Algorithm—It is a combination of a sequence of finite steps to

solve a computational problem.

Program— A program, on the other hand, is a concrete

implementation of an algorithm using a programming

language.

Properties of Algorithm

➢ It should terminate after a finite time.

➢ It should produce at least one output.

➢ It should take zero or more input externally.

➢ It should be deterministic (unambiguous).

➢ It should be language independent.

Example to differentiate between algorithm and program

 Add()
 {

 1. input two numbers a and b

 2. sum a and b and store the result in c

 3. return c

 }

 The above example is an algorithm as it follows its
properties.

4

While(1)
 {

 printf(“MIET”);

 }

The above example is not an algorithm as it will never
terminate. Though it is a program.

The main algorithm design techniques

1. Divide and conquer technique
2. Greedy technique
3. Dynamic programming
4. Branch and bound
5. Randomized
6. Backtracking

Note— The most basic approach to designing algorithms is

the brute force technique, where one attempts all possible

solutions to a problem and opts for the successful one. All

computational problems can be solved through the brute

force method, though often not achieving noteworthy

efficiency in terms of space and time complexity.

For example, search for an element in a sorted array of

elements using linear search.

5

Steps required to design an algorithm

1.Problem Definition: Clearly understand the problem you need to

solve. Define the input, output, constraints, and objectives of the

algorithm.

2.Design Algorithm: Choose an appropriate algorithmic technique

based on the nature of the problem, such as greedy, divide and

conquer, dynamic programming, etc.

3.Draw Flowchart: Create a visual representation of your algorithm

using a flowchart. The flowchart helps to visualize the logical flow of

steps.

4.Validation: Mentally or manually walk through your algorithm with

various inputs to verify its correctness. Ensure it produces the

expected results.

5.Analyze the Algorithm: Evaluate the efficiency of the algorithm in

terms of time complexity (how long it takes to run) and space

complexity (how much memory it uses).

6.Implementation (Coding): Translate your algorithm into actual code

using a programming language of your choice. Write clean, well-

organized code that follows best practices.

Q. Define 'algorithm,' discuss its main properties, and outline the steps

for designing it.

Q. What do you mean by an algorithm, and what are the main

algorithm design techniques?

6

Analysis of Algorithms

The efficiency of an algorithm can be analyzed at two different stages:

before implementation (A Priori Analysis) and after implementation (A

Posteriori Analysis).

A Priori Analysis— This is a theoretical analysis of an algorithm's

efficiency before it's actually implemented. The analysis assumes that

certain factors, such as processor speed and memory, remain constant

and do not affect the algorithm's performance. It involves evaluating

an algorithm based on its mathematical characteristics, such as time

complexity (Big O notation) and space complexity. It provides insights

into how an algorithm will perform under ideal conditions and helps in

comparing different algorithms in terms of their theoretical efficiency.

A Posteriori Analysis— This is an empirical analysis that occurs after

an algorithm has been implemented in a programming language and

executed on an actual computer. The algorithm is tested and executed

on a target machine, and actual statistics like running time and space

required are collected. A Posteriori Analysis provides a more realistic

view of how an algorithm performs in a real-world setting, considering

hardware characteristics, compiler optimizations, and other factors. It

helps validate the theoretical analysis and may reveal unexpected

performance issues or bottlenecks.

Note—Writing a computer program that handles a small set of data is

entirely different from writing a program that takes a large number of

input data. The program written to handle a big number of input data

must be algorithmically efficient in order to produce the result in

reasonable time and space.

7

Asymptotic Analysis of Algorithms

Asymptotic analysis of algorithms is a method used to analyze the

efficiency and performance of algorithms as the input size grows

towards infinity. It focuses on understanding how an algorithm's

performance scales with larger inputs and provides a way to express

the upper (worst-case) and lower bounds (best-case) on its execution

time or space complexity. The primary goal of asymptotic analysis is

to identify the algorithm's growth rate, which helps in making

comparisons between different algorithms and determining their

suitability for various problem sizes.

Asymptotic Notations:

1. O [Big-oh] (upper bound)

2. Ω [Big-omega] (lower bound)

3. ɵ [Big-theta] (tight bound)

4. o [small-oh] (Not tightly upper bound)

5. w [small omega] (Not tightly lower bound)

1. Big-oh Notation (O) : It is used to describe the upper bound or

worst-case performance of an algorithm in terms of its time

complexity or space complexity. It provides an estimate of the

maximum amount of time or space an algorithm can require for

its execution as the input size increases.

Note: Most of the time, we are interested in finding only the

worst-case scenario of an algorithm (worst case time complexity).

Big O notation allows for a high-level understanding of how an

algorithm's efficiency scales without getting into specific

constants or lower-order terms.

8

We say that

f(n) = O g(n) if and only if

f(n) <= c . g(n) for some c >0 after n >= no >=0

Question: Find out upper bound for the function f(n) = 3n+2.

Solution:

Steps:

1. We know that definition of upper bound is f(n) <= c. g(n).

2. f(n) = 3n + 2 (Given)

3. We need to find out c and g(n).

4. If we choose c=5 and g(n) = n, then 3n+2 <= 5*n.

5. For c=5 and n0 = 1 (starting value of “n”), f(n)<=c. g(n).

6. Therefore, f(n) = O(n)

Note: Other functions that are larger than f(n), such as n^2, n^3,

nlogn, etc., will also serve as upper bounds for the function f(n).

However, we typically consider only the closest upper bound among

all possible candidates, as the remaining upper bounds are not as

useful.

1. Given f(n) = 2n2 + 3n + 2 and g(n) = n2 , prove that f(n) = O g(n).

Solution:

Steps:

9

1. We have to show f(n) <= c. g(n) where c and n0 are some positive

constants for all n which is >= n0

2. Now, find out the value of c and n0 such that the equation-(1)

gets true.

 2n2 + 3n + 2 <= c. (n2) ………(1)

If we put c = 7 (note— we can take any positive value for c), then

2n2 + 3n + 2 <= 7 n2

Now, put n=1 which is n0 (starting value for input n)

7 <= 7 [True]

Hence, when c=7 and n0 =1, f(n) = O g(n) for all n which is > = n0

2. Given f(n) = 5n2 + 6n + 4 and g(n) = n2 , then prove that f(n) is O(n2).

Solution:

f(n) will be O(n2) if and only if the following condition holds good:

f(n) <= C. g(n) where C is some constant and n>=n0 >=0

5n2 + 6n + 4 < = C. n2

If we put C=15 and n0 = 1 , then we get

15 <= 15 (which is true.)

It means f(n) is O(n2) where C=15 , and n0 =1

Note: We have to find out c and n0 (starting value of input n) to solve

such a question.

10

3. Solve the function f(n) = 2n + 6n2 + 3n and find the big-oh (O)

notation.

Steps:

1. Find out the greatest degree of “n” from f(n), which is big-oh.

2. Prove it using the formula f(n) <= O(g(n)).

Solution:

Big-oh (upper bound) of f(n) = 2n + 6n2 + 3n will be 2n iff

f(n)<= c. 2n for some constant c > 0 and n> = n0 >=0

2n + 6n2 + 3n < c. 2n

If we put c=11 and n0 =1, then we get

11 <= 22 (It is true.)

It means big-oh of f(n) is 2n when c=11 and n0 = 1

2. Big-omega Notation (Ω): It is used to describe the lower bound or

best-case performance of an algorithm in terms of its time complexity

or space complexity. It provides an estimate of the minimum amount

of time or space an algorithm can require for its execution as the input

size increases.

11

T

We say that

f(n) = Ω g(n) if and only if

f(n) >= c . g(n) for some c >0 after n >= no >=0

For example :

1. Given f(n) = 3n + 2 and g(n) = n, then prove that f(n) = Ω g(n)

Solution

1. We have to show that f(n) >= c. g(n) where c and n0 are some

positive constants for all n which is >= n0

2. 3n + 2 >= c . n

3. When we put c=1

4. 3n +2 >= n

5. Put n = 1

6. 5 > = 1 [True]

7. Hence, when we put c=1 and n0=1, f(n)= Ω g(n).

12

2. Solve the function: f(n) = 3n +5n2 + 8n and find the big

omega(lower bound) notation.

Solution :

Steps:

1. Find out the smallest degree of n from f(n). This will be the

value for lower bound (best case for the function f(n).

2. Use the formula to find out c and n0 to prove your claim.

f(n) = Ω (n) iff f(n) >= C. n where c is some constant and n>=n0>=0

3n +5n2 + 8n >= c. n

If we put c=16 and n0 = 1 , then we get

16 >= 16 (holds good)

It is means lower bound (Ω) for the given function f(n)= 3n +5n2 + 8n

is n.

3. Big Theta Notation (Θ): It’s the middle characteristics of both

Big O and Omega notations as it represents the lower and upper

bound of an algorithm.

13

We say that

f(n) = ɵ g(n) if and only if

c1.g(n) <= f(n) <= c2.g(n) for all n >=n0>=0 and c >0

For example

1. Given f(n) = 3n +2 and g(n) = n, prove that f(n) = ɵ g(n).

Solution

1. We have to show that c1.g(n) <= f(n) <= c2.g(n) for all n >=n0>=0

and c >0

2. c1.g(n) <= f(n) <= c2.g(n)

3. c1. n <= 3n+2 <= c2.n

4. Put c1 =1, c2 = 4 and n=2 , then 2 <= 8 <=8 [True]

14

5. Hence, f(n) = ɵ g(n) where c1=1,c2=4 and n0=2.

3. Solve the function: f(n) = 27n2 +16 and find the Tight (average bound)

bound it.

Solution:

1. If we have upper bound (big-oh) and lower bound (big omega)

of f(n) equal, that’s when we can call it Theta-notation of f(n).

2. Use the formula c1. g(n) <= f(n) <= c2. g(n)

 Let’s check if n2 is Theta or not.

27n2 +16 < = c1. n 2 (for upper bound)

If we put c1 = 43 and n=1, then we get

43 < = 43 (holds good)

Now check for the lower bound

27n2 +16 >= c2. n 2

If we put c1 = 43 and n=1, then we get

43 > = 43 (hold good)

Since upper and lower bounds are the same for the given function

f(n)= 27n2 + 16, n2 is Tight- bound for the function f(n).

15

4. Small-oh [o] : We use o-notation to denote an upper bound that is

not asymptotically tight whereas big-oh (asymptotic upper bound)

may or may not be asymptotically tight.

We say that

f(n) = o(g(n)) if and only if

0<= f(n) < c. g(n) for all values of c which is >0 and n>=n0>0

Or

Lim f(n)/g(n) = 0

16

n->∞

For example

1. Give f(n) = 2n and g(n) = n2, prove that f(n) = o(g(n))

Solution

Lim 2n/n2
n->∞

Lim 2/n
n->∞

Lim 2/∞ = 0
n->∞

Hence, f(n) = o(g(n))

5. w [small omega] : We use w-notation to denote a lower bound that

is not asymptotically tight.

We say that

f(n) = w(g(n)) if and only if

0 <= c. g(n) < f(n) for all values of c which is >0 and n>=n0>0

Or

Lim f(n)/g(n) = ∞
n->∞

For example

1. Given f(n)= n2/2 and g(n)= n , prove that f(n) = w(g(n)).

17

Solution

Lim n2/2 /n
n->∞

Lim n/2
n->∞

Lim ∞ /2 = ∞
n->∞

Hence, f(n) = w(g(n))

Question. Why should we do asymptotic analysis of algorithms?

It is crucial for several reasons:

Efficiency Comparison: It allows us to compare and evaluate different

algorithms based on their efficiency. By analyzing how an algorithm's

performance scales with input size, we can select the most suitable

algorithm for a given problem.

Algorithm Design: Asymptotic analysis guides the design of new

algorithms. It helps in making informed design choices to optimize

algorithms for various use cases.

Resource Management: Understanding the resource requirements of

algorithms as input size grows helps allocate computational resources

efficiently, preventing bottlenecks.

Scalability: It provides insights into how algorithms will perform as

data sizes increase, ensuring that systems can handle larger inputs

efficiently.

18

Question. Order the following functions by their asymptotic growth,

and justify you answer: f1=2n, f2= n3/2, f3=nlog n, f4= nlogn.

19

20

21

Complexity of Algorithms

1. Time complexity

2. Space complexity

Algorithms can be broadly categorized into two main groups based on

their structure and approach:

1. Iterative algorithms (having loop(s))

2. Recursive algorithms (having recursion)

Note: In the ‘a priori’ analysis of algorithms, the RAM (Random
Access Machine) model is used for analyzing algorithms without
running them on a physical machine.

The RAM model has the following properties:

• A simple operation (+ , \ , * , - , = , &&, ||, if) takes one-time

step.

• Loops are comprised of simple/primitive/basic operations.

• Memory is unlimited and access takes one-time step.

Note: In the last step of the ‘a priori’ analysis of algorithms,

asymptotic notation is commonly used to characterize the time

complexity of an algorithm. Asymptotic notation provides a concise

way to describe how the performance of an algorithm scales as the

input size becomes very large. It allows us to focus on the most

significant factors affecting the algorithm's efficiency and ignore

constant factors and lower-order terms.

Q. What are the key characteristics of the RAM model?

22

Time complexity (running time)

The running time of the algorithm is the sum of running times for

each statement executed; a statement that takes Ci steps to execute

and executes “n” times will contribute (Ci * n) to the total running

time.

Note: “Ci (i=1,2,3 …, n)” indicates constant unit of time.

A(n)

{ Cost Times

 int i; C1 1

 for(i = 1; i <=n ; i++) C2 n+1

 printf(“MIET”); C3 n

}

T(n) = C1*1 + C2*(n+1) + C3* n

After eliminating constant terms, we get the time complexity in

terms of n.

O(n); linear time

Q. With a suitable example, define the term "running time" of an algorithm.

23

Time Complexity of Iterative Algorithms

Note— When an algorithm contains an iterative control construct

such as a while or for loop, we can express its running time as the sum

of the times spent on each execution of the body of the loop.

Note— If a program doesn’t have loop(s) as well as recursion, then it

takes O (1)- constant running time.

A()
{
 pf(“MIET”); // one-time step
 pf(“MIET”); // one-time step
 pf(“MIET”); // one-time step
}

1+1+1= 3 (it’s a constant.)

Note— We can define a constant running time using either O (1) or

O(C).

Pattern-01 One loop and increment/decrement is by 1

A(n)
{
for(i=1 ; i<=n; i++) → n+1
 pf(“MIET”); → n-1
}

T(n)= n+1 +n+1
 = 2n+2
T(n) = O(n) [We remove all constant terms and consider only highest
degree of n for the running time.]

24

Pattern-02 One loop and increment/decrement is not by 1

In this case, we need to calculate the number of iterations carefully.

A (n)
{
 int i;

 for(i= 1; i<n ; i= i*2){

 pf(“MIET”);

 }

}

As loop is not getting incremented by one, we will have to carefully

calculate the number of times “MIET” will be executed.

i= 1, 2, 4, . . . , n

After Kth iterations, “i” gets equal to “n”:

 i= 1, 2, 4, . . . , n

Iterations= 20, 21, 22, … , 2k

2k = n

Convert it into logarithmic form… [If ab = c, we can write it loga
c = b]

k = log2n

O(logn)

25

A(n)

{

 int i , j;

 for(i = 1 to n)

 for(j = 1 to n)

 pf(“MIET”); //It

will be printed n2 times .

}

A(n)

{

 int i , j , k;

 for(i = 1 to n)

 for(j = 1 to n)

 for(k = 1 to n)

 pf(“MIET”);//n3

}

Time complexity is O(n2) Time complexity is O(n3)

Pattern-4 When there is a dependency between the loop and the

statements in the body of the loop.

A(n)

{

1. int i = 1, j = 1;

2. while(j <= n)

 {

3. i++;

26

4. j = j + i;

5. pf(“MIET”); // We need to know the no of times it’ll be printed

 }

}

Solution:

We have to find out the number of times “MIET” will be printed to know

the time complexity of the above program. We can see that there is a

dependency between the line number 2 (while loop) and 4(the value of

“j” which in turns depends on “i”).

i = 1, 2, 3, 4, … k

j = 1, 3, 6, 10 … k(k+1)/2 [sum of the first “K” natural numbers]

k(k+1)/2 = n+1 [when the value of “n” gets n+1, condition gets false]

k2 = n [We eliminate constant terms, consider only variable.]

k =√n Time complexity is O(√n)

Pattern05: When there is a dependency between loops (having more

than one loop)

Note – We have to unroll loops in order to find out the number of times

a particular statement gets executed.

27

A(n)

{
 int i, j, k;

 for(i = 1; i <= n; i++)
 {
 for(j = 1; j <= i; j++)
 {
 for(k = 1; k <= 100; k++)
 {
 Pf(“MIET”);
 }
 }
 }
 }

There is a dependency between the second and the first loop; therefore,
we will have to unroll the loops to know the number of times “MIET” will
be printed.

 i = 1 i = 2 i = 3 … i = n
 j = 1 j = 2 j = 3 j = n
 k = 1*100 k = 2 * 100 k = 3* 100 k = n* 100

 1*100 + 2*100 + 3*100 + . . . + n*100

 100(1+ 2+3 +…n)

 100(n(n+1)/2) = 50*n2 + 50*n

Time complexity = O(n2) [We remove constant terms and lower order

terms.]

28

Q. Write a function to compute xn in logarithmic time complexity using

an iterative approach.

Time Complexity of Recursive Algorithms

To find out the time complexity of recursive programs, we have to write

a recurrence relation for the given program and then solve it using one

of the following methods:

1. Iteration or Back substitution method

2. Recursion-tree method

3. Master method

4. Forward substitution method (Substitution Method)

5. Changing variable method

Let’s learn how to write a recurrence relation for the given program

having a recursive call/function.

29

Note: Each recursive algorithm or program must have a stopping

condition (also known as an anchor condition or base condition) to halt

the recursive calls.

A(n)
{
 if (n > 0) // stopping condition for the recursive call
 {
 pf(“MIET”);
 A(n-1); // Calling itself(recursive function)
 }

 }

We assume that T(n) is the total time taken to solve A(n) , where n is the

input. It means that this T(n) is split up among all statements inside the

function i.e., time taken by all instructions inside a function is equal to

T(n).

Note: “if” and “print” take constant amount of time step as per the RAM

model, and we can use either 1 or C to indicate it. When “if- condition”

gets false, it again takes constant amount of time — (one-time step).

Recurrence relation for the above program is given below:

 T(n) = T(n-1) + 1 when n>0

 1 When n = 0 (stopping condition)

30

#Mixed (iterative + recursive)

A(n)
{
 If(n>0) …... 1
 {
 for(i=1; i<=n; i++) …. n+1
 {
 pf(“MIET”); …... n
 }
 A(n-1); ….T(n-1)
 }
}

 T(n-1) + n when n>0

 T(n) =

 1 When n = 0

#Factorial of a number

fact(n)
{
 if(n<=1)

31

 return 1;
 else
 return n*fact(n-1); // here “*” takes constant time step
}

Note: Multiplication and other instructions in green will take a constant

amount of time. Left side of the * is the first operand, cannot be

included in the equation.

T(n) = T(n-1) + c when n>1

 = 1 when n <=1

#Fibonacci number Fn

fib(n)
{
 if (n== 0 || n==1)
 return n;
 else
 return fib(n-1)+ fib(n-2);
}

T(n) = T(n-1)+ T(n-2) + 1 when n >1

 1 unit of time when n<=1

32

1. Iteration method (backward substitution) for solving recurrences

The Iteration Method, also known as Backward Substitution, is a

technique used to solve recurrence relations and determine the time

complexity of algorithms. This method involves iteratively substituting a

recurrence relation into itself, moving backward towards the initial

conditions or base cases, until a pattern or closed-form solution

emerges.

 T(n-1) + 1 when n>0

 T(n) =

 1 When n = 0

Note— When solving a recurrence relation to determine the time

complexity, our goal is to address the initial term given in T(…), which

represents a sub-problem. We utilize the base condition to simplify the

T() term.

T(n) = T(n-1) + 1 ………………….(1)

T(n-1)= T(n-2) + 1

T(n-2) = T(n-3) +1

Back substitute the value of T(n-1) into (1)

T(n) = [T(n-2) + 1] + 1

33

T(n) = T(n-2) + 2 …………………(2)

Now, substitute the value of T(n-2) into (2)

T(n) = [T(n-3)+1]+2

T(n) = T(n-3)+3 …………………………(3)

 .

 .

 .

 = T(n-k)+k [Assume n-k = 0 so, n= k]

 = T(n-n)+n

 = T(0) + n [T(0) = 1 is given]

 = 1+ n

T(n) = O(n)

 T(n-1) + n when n>0

 T(n) =

 1 When n = 0

T(n) = T(n-1) + n …………………………(1)

T(n-1)= T(n-2)+ n-1

T(n-2)= T(n-3) + n-2

Substituting the value of T(n-1) into (1)

T(n)= [T(n-2)+(n-1)]+n

34

T(n)= T(n-2) + (n-1) + n …………………….(2)

Substituting the value of T(n-2) into (2)

T(n) = [T(n-3) +(n-2)] + (n-1)+n

T(n) = T(n-3) + (n-2) + (n-1) +n ………………….(3)

 .

 .

 .

T(n) = T(n-k)+(n-(k-1))+ (n-(k-2))+. . . +(n-1) + n …………(4)

Assume that n-k = 0

Therefore n = k

In place of k, substitute “n” in the equation (4)

T(n) = T(n-n) + (n –(n-1)) + (n- (n-2) + . . . (n-1) +n

T(n) = T(0) + 1 +2 +. . .(n-1) + n

T(n) = 1+ n(n+1)/2

 = O(n2)

Solve the recurrence using back substitution method :

T(n) = 2T(n/2) +n [previous year question]

Base condition is not given in the question; therefore, we assume that

when n=1 , it takes 1 unit of time.

35

T(n) = 2T(n/2) + n ……………………………… (1)

T(n/2)= 2T(n/4) + n/2

T(n/4)= 2T(n/8) + n/4

Substituting the value of T(n/2) into (1), we get

T(n) = [2 (2T(n/4)+n/2)+ n]

T(n) = 22 T(n/4) + 2n ……………………………………(2)

Substituting the value of T(n/4) into (2), we get

T(n) = [4 (2T(n/8) + n/4) + 2n

 = 23 T(n/8) + n + 2n

 = 23 T(n/23) + 3n…………………………………………(3)

 .

 .

 .

 = 2k T(n/2k) + k*n ………………………………………….(4)

Assume that (n/2k) = 1, then

2k = n

log2n = k

 T(n) = 2log
2

n T(n/n) + n*logn

T(n) = n T (1) + n logn [Since 2
log

2
n = n]

36

 = n+ nlogn= O(nlogn)

V.V.I

37

38

V.V.I

39

2. Recursion-Tree Method for Solving Recurrences

Type- 01 (Reducing function)

Steps:

1. Make T(n) the root node.

2. Draw the tree for two to three levels to calculate the cost and

height.

3. If the cost at each level is the same, multiply it by the height of

the tree to determine the time complexity.

4. If the cost at each level is not the same, try to identify a sequence.

The sequence is typically in an arithmetic progression (A.P.) or

geometric progression (G.P.).

40

41

42

43

44

Type-2 (Dividing function- when there is more than one sub-problem,

and the size of each sub-problem is the same.)

Steps:

1. Make the last term the root node.

2. Draw the tree for two to three levels to calculate the cost and

height.

3. If the cost at each level is the same, multiply it by the height of

the tree to determine the time complexity.

4. If the cost at each level is not the same, try to identify a sequence.

The sequence is typically in an arithmetic progression (A.P.) or

geometric progression (G.P.).

Note: If the size of sub-problem is only one, follow Type-1 approach

only.

45

46

47

48

49

 Q. Solve the following recurrences:

i. T (n) = T (n-1) + n4 using iteration method

ii. T(n) = 3T(n/4) + cn2 using recursion tree method

50

51

Q Explain Binary Search Algorithm. Also solve its recurrence relation.

 It is a searching algorithm used in a sorted array by repeatedly dividing

the search interval in half. The idea of binary search is to use the

information that the array is sorted and reduce the time complexity to

O(Log n).

52

53

54

3 Master Theorem to solve recurrences

Note—Effective for the university exam

Question. State Master Theorem and find time complexity for the

recurrence relation T(n) = 9 T(n/3) +n.

Solution— Let a >= 1 and b > 1 be constants, let f(n) be a function , and

let T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n)

Where we interpret n/b to mean either floor value of (n/b) or ceiling

value of (n/b). Then T(n) has the following asymptotic bounds:

1. If f(n) = O(nlog
b

a-ϵ) for some constants ϵ >0, then T(n)= ɵ(nlog
b

a)

2. If f(n) = ɵ(nlog
b

a), then T(n) = ɵ(nlog
b

a logn)

3. If f(n) = Ω(nlog
b

a+ϵ) for some constant ϵ >0, and if af(n/b) <= c(f(n))

for some constant c <1 and all sufficiently larger n, then T(n)=

ɵ(f(n)).

Given: a= 9, b= 3 and f(n) = n

Now we need to calculate nlog
b

a as it’s the common term in all 3-cases of

the Master Theorem.

nlog
b

a = nlog
3

9 = n2 (It is clearly bigger than f(n), which is n)

Case-1 can be applied; therefore, T(n) = ɵ(n2).

Question. State Master Theorem and find time complexity for the

recurrence relation T(n) = T(2n/3) +1.

55

Solution— Given: a = 1, b= 3/2 and f(n) =1

Now we need to calculate nlog
b

a as it’s the common term in all 3-cases of

the Master Theorem.

nlog
b

a = nlog
3/2

1 = n0 = 1 [Since, log1 = 0]

As the result of nlog
b

a is equal to f(n) in the question, we can apply the

second case (for tight bound/average case).

T(n)= T(n) = ɵ(nlog
b

a logn)

 =T(n) = ɵ(logn)

Question. State Master Theorem and find time complexity for the

recurrence relation T(n) = 3 T(n/4) +nlogn.

Solution— Given: a = 3, b= 4 and f(n) =nlogn

Now we need to calculate nlog
b

a as it’s the common term in all 3-cases of

the Master Theorem.

nlog
b

a = nlog
4

3 = n0.793

Since, nlogn = Ω(nlog
4

3+ ϵ) where ϵ = 0.2

Case-3 applies if we can show that

af(n/b) <= c.f(n)

3(n/4)log(n/4) <= (3/4)nlogn for c = ¾

56

By case-3, T(n) = ɵ(nlogn)

Note—Effective for the competitive exam

57

58

59

60

61

62

4. Substitution method for solving recurrences [Forward

Substitution method]

63

64

65

Q. Solve by substitution method (Forward substitution method):

a. T(n) = n* T(n-1) if n>1 ; T(1) =1 …… [A]

Solution:

Step 1: Guess the solution

T(n) = O (nn) ……. [1] [You can easily get it using iteration method.]

Step 2: Now, we have to prove that our assumption is true using

property of mathematical induction.

T(n) <= c. nn from equation-[1]

66

Now, put n=1 in equation-[1]

 T(1) <= c. 1

 1 <= c.1 [True for c>=1 , n0 = 1]

It should be true 1, 2, 3, . . ., k

T(k) <= c. kk [1<= k <= n]

When we move forward from 1 to n somewhere we get k = n-1.

T(n-1) <= c. (n-1)(n-1) …………………… [2]

Now, put the value of T(n-1) into equation [A].

T(n) <= n * c. (n-1)(n-1)

 <= c * n * (n-1) (n-1)

 <= c * n * n n [if n-1 = n]

 <= cn * nn [we consider only bigger term]

 <= n * nn [We remove constant term(s)]

 <= nn+1

 <= nn

Hence, T(n) = O(nn) proved

67

68

69

70

Sorting Algorithms and their Analysis

71

72

73

74

Shell-Sort Algorithm

75

76

77

Quick Sort Algorithm

78

79

80

81

V.V.I

82

83

84

Apply Merge sort on the array { 9, 6, 5, 0, 8,5} and also

write down its time complexity

85

86

Heap Sort Algorithm

87

88

89

90

Q What do you understand by a stable sort? Name two stable sort

algorithms.

A sorting algorithm is said to be stable if two objects having equal keys appear in
the same order in sorted output as they appear in the input data set. For
example, Insertion and Counting sorts.

Q. Define in-place sorting algorithm.

It is a type of sorting algorithm that rearranges the elements of an array or list

without requiring additional memory space proportional to the size of the input.

Q Describe the difference between the average-case and the worst-case analysis

of algorithm, and give an example of an algorithm whose average-case running

time is different from worst case analysis.

Q. Compare sorting algorithms in a tabular form.

Sorting in linear time O(n)

91

[Non-comparison-based sorting algorithms]

Non-comparison-based sorting algorithms do not rely on pairwise comparisons

between elements to determine their relative order. Instead, they exploit

properties of the input data, such as the range of values, to achieve efficient

sorting. These algorithms are often used when the range of possible input values is

known and limited, making them more efficient than comparison-based algorithms

in certain scenarios. Here are some common non-comparison-based sorting

algorithms:

1. Count sort

2. Radix sort

3. Bucket sort

Counting-Sort Algorithm

Counting Sort assumes that each of the "n" input elements is an integer in the range

from 0 to "k," where "k" is an integer representing the range of values.

92

93

Q. Write down the Counting-Sort algorithm and illustrate the

operation of Counting Sort on the array A = {6, 4, 8, 4, 5, 1}.

Solution:

94

95

Radix-Sort Algorithm

96

97

Bucket-Sort Algorithm

98

99

Unit-02

 Red-Black Tree

It is a Binary Search Tree (BST) with one extra bit of storage per node: its

color, which can be either red or black.

Properties of RB Tree:

1. Every node is either red or black.

2. The root is black.

3. Every leaf node (NIL) is black.

4. If a node is red, then both its children are black. It means we need

to avoid red-red (RR) conflict.

5. For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

100

 Fig – Red Black Tree

Q1. Explain various rotations in an RB Tree.

We have four types of rotations in RB tree like AVL tree:

1. Left-Left (LL) problem: Needs a single right rotation

2. Right-Right (RR) problem : Needs a single left rotation

3. Left-Right (LR) problem: Needs one left and then one right

rotations.

4. Right-Left (RL) problem: Needs one right and one left rotations.

Note: We have to recolor only those nodes which are involved in

rotation. When dealing with RL or LR rotation, we have to recolor only

last rotated nodes.

101

102

103

104

Q2. Compare the properties of AVL tree with RB Tree.

Q3. What are advantages of an RB Tree?

Advantages:

Balanced Structure: Ensures efficient operations (O(log n)) by self-

balancing the tree.

Predictable Performance: Rules maintain consistent performance

regardless of data.

Fast Insertions/Deletions: Efficient for frequent changes.

Sorted Order: Supports sorted data and range queries.

Search Efficiency: Quick search operations due to balanced

structure.

105

Q4. Write an algorithm for insertion of keys into an RB Tree and

also insert the following keys <5,16,22, 25, 2,10,18,30,50,12,1>

into an empty RB Tree.

Algorithm for insertion

1. If the tree is empty, create a new node as the root node with

the color “black”.

2. If the tree is not empty, insert the new node with the color

“red”.

3. If the parent of the new node is “black”, exit.

4. If the parent of new node is “red”, check the color of parent’s

sibling (the uncle of the newly inserted node).

4(a) If its color is black or Null (no uncle), perform suitable

rotations and recolor only the last rotated nodes.

4(b) If its (uncle’s) color is red, recolor the following nodes:

1. Uncle

2. Parent

3. Grandfather (if it is not the root of the tree).

Check if the tree is an RB tree or not. If not, consider the grandfather as

a newly inserted node and repeat step -4.

106

107

108

109

110

111

112

113

114

115

Q4. Explain about double black node problem in RB tree.

 When a black node is deleted and replaced by a black child, the child is marked as

double black. The main task now becomes to convert this double black to single

black.

Q5. Construct an RB Tree, and let h be the height of the tree and n be

the number of internal nodes in the tree. Show that h<= 2log2(n+1).

116

117

B-Trees

A B-tree is a self-balancing m-way search tree with the following

restrictions:

1. The root node must have at least two children.

2. Every node, except for the root and leaf nodes, must have at least ⌈m/2⌉

children.

3. All leaf nodes must be at the same level.

4. The creation process is performed bottom-up.

Properties of m-way search tree:

1. m (degree/order): Maximum number of children (or child pointers)

2. m-1 keys : Maximum keys per node

3. All keys are arranged in ascending order.

118

Note— An m-way search tree, also known as an m-ary search tree, does not have

strict height control during its construction. Depending on the order (m) and the

specific keys inserted, an m-way search tree can grow to a height of "n," where "n"

is the number of keys inserted into the tree. To address this issue and maintain a

more balanced structure, B-trees were introduced. B-trees are a type of m-way tree

with specific restrictions and properties designed to keep their height under control

and ensure balanced branching.

Insertion of keys in a B-tree

Type-01 We are given some keys with a degree.

 For example: insert the keys: 12, 21, 41, 50, 60, 70, 80, 30, 36, 6, 16 into

an empty B-tree with degree 4.

Create a table following the properties of the B-tree

Type-02 We are given some keys with a maximum degree.

119

For example: Using the maximum degree m= 4, insert the following

sequence of integers 10, 25, 20, 35, 30, 55, 40, 45, 50, 60, 75, 70, 65, 80,

85,90 into an initially empty B-Tree.

Create a table following the properties of the B-tree

120

Type-03 We are given some keys with a minimum degree.

For example: Using the minimum degree t= 3, insert the following

sequence of integers 10, 25, 20, 35, 30, 55, 40, 45, 50, 60, 75, 70, 65, 80,

85,90 into an initially empty B-Tree.

Create a table following the properties of the B-tree

Note— The maximum number of keys that can be stored in a particular

node of a B-tree with a minimum degree of t is 2t-1. Therefore, based

on the question, the maximum number of keys per node is 5.

121

Note—The simplest B-tree occurs when t=2. Every internal node then

has either 2, 3, or 4 children, and we have a 2-3-4 tree.

Q. Using the minimum degree t= 3, insert the following sequence of

integers 10, 25, 20, 35, 30, 55, 40, 45, 50, 60, 75, 70, 65, 80, 85,90,

100,110,120, 112, 114, 120 into an initially empty B-Tree.

Solution—

122

123

124

125

Q. Using the minimum degree t= 2, insert the following sequence of

integers 12, 25, 42, 50, 60, 70, 80, 28, 36, 14, 18 into an initially empty B-

Tree.

Solution—

126

127

s

128

129

130

Deletion of keys in a B-tree

131

132

133

Q. Using the minimum degree t = 2, insert the following sequence of

integers: 12, 25, 42, 50, 60, 70, 80, 28, 36, 14, 18 into an initially empty

B-Tree. Now, delete 60, 18, and 14.

134

135

136

Q. Why don’t we allow a minimum degree of t=1 in B-trees?

Allowing a minimum degree of t=1 in B-trees would fundamentally change their

structure and behavior in ways that make them less efficient and undermine some

of their key advantages. The choice of a minimum degree of t>=2 in B-trees is a

deliberate design decision to maintain the desirable properties and performance

characteristics that make B-trees valuable for a wide range of applications involving

sorted data storage and retrieval.

Q. Show all legal B-Trees of minimum degree 2 that represent <1,2,3,4,5>

Q.

137

Q7. Define Binomial Tree and mention its properties.

138

139

Q8. Define Binomial heap, write an algorithm for union of two Binomial

heaps and also write its time complexity.

140

141

142

143

144

Time complexity : O(Log(n))

Q9. Design a Binomial heap for a given A, A= [7, 2, 4, 17, 1, 11, 6, 8,15,10,

20]

Steps:

1. Create a Binomial heap H1 containing a new element (key).

2. Apply union operation between the two Binomial min heaps H and

H1.

145

146

147

148

149

Q. Write down the algorithm for Decrease key operation in Binomial
Heap also write its time complexity.

BINOMIAL-HEAP-DECREASE-KEY(H, x, k)

1 if k > key[x]

2 then error "new key is greater than current key"

3 key[x] = k

4 y = x

5 z = p[y]

6 while z != NIL and key[y] < key[z]

7 do exchange key[y] and key[z]

8 If y and z have satellite fields, exchange them, too.

9 y = z

10 z = p[y]

Running time T(n) = O(logn)

150

Q10. Define Fibonacci heap and also compare the complexities of Binary

heap, Binomial heap and Fibonacci heap.

151

152

Q11. Explain the extracting minimum node operation of Fibonacci heap

with example.

This operation is accomplished by deleting the minimum key node and

then moving all its children to the root list. It uses the process called

“consolidate” to merge the trees having same degree.

Steps:

1. Delete the minimum node .

2. Join the root list of deleted node’s descendants to the root list of

original root list.

3. Traverse left to right in the root list

3.a Find new minimum.

3.b Merge trees having same degree.

 4. Stop after having every tree with unique degree.

153

Example-

154

Q12. Define Skip List and Trie with example.

155

156

Q. Explain the Search operation in Skip list with a suitable example. Also

write its algorithm.

157

158

159

Q. Insert the following strings into the initially empty trie: DOG, DONE, CAT, CAN, RIGHT, DO,

JUG, DAA, CA, CAME. Then delete the strings DO, CAME, and RIGHT from it.

160

Q14. Insert strings < ten, test, car, card, nest, next, tea, tell, park, part,

see, seek, seen> in an empty Trie data structure and also compress the

Trie.

161

Unit-03

Divide and Conquer: It is one of the algorithm design techniques in

which the problem is solved using the divide, conquer and combine

strategy.

Divide: This involves dividing the problem into smaller sub-problems.

This step generally takes a recursive approach to divide the problem

until no sub-problem is further divisible.

Conquer: This involves solving sub-problems by calling them recursively

until solved.

Combine: When the smaller sub-problems are solved, this stage
recursively combines them until they formulate a solution to the original
problem.

Following are some standard algorithms that follow Divide and

conquer approach:

1. Quick sort

2. Merge sort

3. Strassen’s algorithm for matrix multiplication

4. Convex Hull algorithm

5. Closest pair of points

162

Q1. Describe the Convex-Hull problem with a suitable example.

Given a set of points, a Convex Hull is the smallest convex polygon

containing all the given points.

Quickhull Algorithm [Divide and Conquer Algorithm]

Let P[0…n-1] be the input array of points. Following are the steps for

finding the convex hull of the points.

1. Find the point with the minimum X-coordinate. Let’s say, min_x and

similarly the point with the maximum X-coordinate, max_x.

2. Make a line joining these two points, say L. This line divides the

whole set into two parts. Take both parts one by one and proceed

further.

163

3. For a part, find the point P with the maximum distance from line L.

P forms a triangle with the points min_x and max_x.

4. The above step divides the problem into two sub-problems, which

are solved recursively. Now, the line joining the points P and min_x

and the line joining the points P and max_x are new lines, and the

points residing outside the triangle are the set of points. Repeat

line number 3 till there is no point left with the line. Add the

endpoints of this point to the convex hull.

Example:

Find a convex hull of a set of points given below.

164

165

166

 Matrix Multiplication

167

168

169

V.V.I

170

Q2. Compare and contrast BFS and DFS. How do they fit into the

decrease and conquer strategy?

Decrease and Conquer Strategy: The name ‘divide and conquer’ is used

only when each problem may generate two or more sub-problems. The

name ‘decrease and conquer’ is used for the single sub-problem class.

The Binary search rather comes under decrease and conquer because

there is one sub-problem. Other examples are BFS and DFS.

BFS (Breadth First Search)

1. It is a traversal approach in which we first walk through all nodes on the same

level before moving on to the next level.

2. It uses Queue data structure.

3. It is more suitable for searching vertices closer to the given source.

4. It requires more memory.

5. It considers all neighbors first and therefore not suitable for decision-making

trees used in games or puzzles.

DFS (Depth First Search)

1. It is also a traversal approach in which the traversal begins at the root node and
proceeds through the nodes as far as possible until we reach the node with no
unvisited nearby nodes.

2. It uses stack data structure.

3. It is more suitable when there are solutions away from source.

4. It requires less memory.

171

5. It is more suitable for game or puzzle problems. We make a decision, and the

then explore all paths through this decision. And if this decision leads to win
situation, we stop.

Greedy Method of Algorithm Design

As the name suggests it builds up a solution piece by piece locally, always

choosing the next piece that offers immediate benefit. The main function

of this approach is that the decision is taken on the basis of the currently

available information.

Note— A greedy algorithm always makes the choice that looks best at

the moment. That is, it makes a locally optimal choice in the hope that

this choice will lead to a globally optimal solution.

Pseudo code of Greedy Algorithm

Greedy(arr[], n)
{
 Solution = 0;
 for i=1 to n
 {
 x = select (arr[i]);

 if feasible(x)
 {
 Solution = solution + x;
 }
 }

 }

172

Initially, the solution is assigned with zero value. We pass the array and
number of elements in the greedy algorithm. Inside the for loop, we
select the element one by one and checks whether the solution is
feasible or not. If the solution is feasible, we add it to the solution.

Applications of Greedy Algorithm

o It is used in finding the shortest path.

o It is used to find the minimum spanning tree using the prim's
algorithm or the Kruskal's algorithm.

o It is used in a job sequencing with a deadline.

o This algorithm is also used to solve the fractional knapsack
problem.

Let’s try to understand some terms used in the optimization problem.

Suppose we want to travel from Delhi to Mumbai as shown below:

 Problem (P): Delhi(D) → Mumbai (M)

There are multiple solutions to go from D to M. We can go by walk, bus,

train, airplane, etc., but there is a constraint in the journey that we have

to travel this journey within 16 hrs. If we go by train or airplane then only,

we can cover this distance within 16 hrs. Therefore, we have multiple

solutions to this problem, but only two solutions satisfy the constraint,

which are called feasible solutions.

If we say that we have to cover the journey at the minimum cost, then

this problem is known as a minimization problem.

Till now, we have two feasible solutions, i.e., one by train and another
one by air. Since travelling by train cost us minimum, it is an optimal
solution. The problem that requires either minimum or maximum result
is known as an optimization problem. Greedy method is one of the
strategies used for solving the optimization problem. A Greedy algorithm

173

makes good local choices in the hope that the solution should be either
feasible or optimal.

Q3. Describe optimization problem, feasible solution and optimal

solution.

Optimization problem – An optimization problem refers to a

computational problem where the goal is to find the best solution from

a set of possible choices (called feasible solutions). The objective is to

either maximize or minimize a specific criterion while adhering to a set

of constraints. We have the following methods to solve optimization

problems:

1. Greedy

2. Dynamic programming

3. Branch and bound

Feasible solution - Most of the problems have ‘n’ inputs and require us

to obtain a subset that satisfies some constraints. Any subset that

satisfies these constraints is called a feasible solution. A problem can

have many feasible solutions.

 “A feasible solution satisfies all constraints of the problem.”

Optimal solution - It is the best solution out of all possible feasible

solutions.

174

Q4. What is principle of optimality?

A problem is said to satisfy the Principle of Optimality if the sub solutions
of an optimal solution of the problem are themselves optimal solutions
for their subproblems. For example, the shortest path problem satisfies
the principle of optimality.

Q5. Differentiate between Greedy approach and Dynamic programming
approach.

Greedy Approach:

1. We make a choice that seems best at the moment in the hop that
it will lead to global optimal solution.

2. It does not guarantee an optimal solution.
3. It takes less memory.
4. Fractional Knapsack is an example of Greedy approach.

Dynamic Programming Approach:

1. we make a decision at each step considering current problem
and solution to previously solved sub problem to calculate
optimal solution.

2. It guarantees an optimal solution.
3. It takes more memory.
4. 0/1 Knapsack is an example of Dynamic programming approach.

175

Q6. Find the optimal solution for the fractional knapsack problem
with n=7 and a knapsack capacity of m=15, where the profits and
weights of the items are as follows: (p1, p2, . . . , p7) = (10, 5, 15, 7,
6, 18, 3) and (w1, w2, . . . , w7) = 2, 3, 5, 7, 1, 4, 1, respectively.

 Capacity of knapsack(bag) = 15

We have to put objects in the bag (knapsack) such that we should get
maximum profit.

Selection of the object can be entirely (x=1), in fraction (0<=x<=1) or
not selected (x=0).

Object Profits Weights P/W

1 10 2 5

2 5 3 1.6

3 15 5 3

4 7 7 1
5 6 1 6

6 18 4 4.5

7 3 1 3

We select an object according to its P/W ratio. An object with
maximum P/W ratio will be selected first and then second maximum
P/W ratio and so on.

176

Remaining = Capacity of Knapsack- Weight of the selected object

Final table according to decreasing P/W ratio

Objects Profits(P) Weights P/W Remaining Selection(X)

5 6 1 6 15-1=14 1

1 10 2 5 14-2=12 1

6 18 4 4.5 12-4=8 1

3 15 5 3 8-5=3 1

7 3 1 3 3-1=2 1

2 5 3 1.66 2-2=0 2/3
4 7 7 1 0 0

Object-4 is not selected; therefore, value of x for this object is zero.
Object-2 is selected only 2 units out of 3 units, so its value for x is
(2/3).

 Profit = Xi * Pi

Profit = 1* 6 + 1*10 + 1*18 + 1*15 + 1*3+ (2/3) * 5 + 0*7
 = 6 + 10 +18+ 15+ 3+3.3 +0
 = 55.3

Job Sequencing with Deadlines Problem

We are given a set of n jobs. Associated with job i is an integer deadline d i >= 0
and a profit pi >0. For any job i, the profit pi is earned if and only if the job is
completed by its deadline. The objective is to maximize the total profit by
scheduling jobs in a way that they meet their deadlines.

177

The constraints in this problem include:

Each job has a specific deadline by which it must be completed.
Each job takes one unit of time to complete. This one unit of time may be
equal to one hour, one day, one week, or one month.
Only one machine is available for processing jobs.
We can only work on one job at a time.
We cannot exceed the specified deadlines.
No preemption.

Q. Using a greedy method, find the optimal solution for the “job

sequencing problem with deadlines” with n = 4, where (p1, p2, p3,
p4) = (100, 10, 15, 27) and (d1, d2, d3, d4) = (2, 1, 2, 1).

178

Q. Identify all solutions satisfying the constraints for the “job
sequencing with deadlines” problem with n = 4, where (p1, p2, p3,
p4) = (100, 10, 15, 27) and (d1, d2, d3, d4) = (2, 1, 2, 1).

Solution— We know that we can have multiple solutions for an
optimization problem, but feasible solutions are only those that
satisfy all constraints of the problem. Therefore, we need to identify
all feasible solutions for this problem.

179

Activity Selection Problem

The activity selection problem involves selecting a maximum number of non-
overlapping activities from a given set of activities, each with a start time and
finish time. The goal is to choose a set of activities that do not overlap in time
and, therefore, can all be completed.

The constraints in this problem include:

You can only perform one activity at a time.
The activities must be selected in a way that none of them overlap in time.

Q. Using Greedy method, find an optimal solution to the activity
selection problem with the following information:

Activity A1 A2 A3 A4 A5 A6 A7 A8

Start 1 0 1 4 2 5 3 4

Finish 3 4 2 6 9 8 5 5

180

Solution—

181

182

183

184

185

186

187

Q7. Define spanning tree and minimum spanning tree with an
example.

Spanning Tree – It is a subset of graph G having all its vertices covered
with minimum possible number of edges. If there are ‘n’ vertices in
an undirected connected graph, then every possible spanning tree
out of this graph has “n-1” edges. It does not have a cycle.
Minimum Spanning Tree (MST) – An MST for a weighted, connected,
undirected graph is a spanning tree having a weight less than or equal
to the weight of every other possible spanning tree.

188

Example:

189

Prim’s Algorithm for finding an MST

190

Q8. Give an example of an MST using Prim’s algorithm for a
connected graph.

191

Kruskal’s Algorithm for finding an MST

Algorithm:

1. Sort all the edges in increasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree
formed so far. If cycle is not formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Single Source Shortest-Paths Problem

1. Dijkstra’s Algorithm (Greedy)
2. Bellman-Ford Algorithm (Dynamic)

Given a graph G = (V, E), we want to find a shortest path from a given
source vertex s ϵ V to each vertex v ϵ V.

192

1. Dijkstra’s Algorithm for Single Source Shortest Paths

Dijkstra’s algorithm solves the single source shortest-paths problem on
a weighted graph G = (V , E) for the case in which all edge weights are
nonnegative. It works for directed as well as undirected graph. It may or
may not work with negative edge weights.

193

194

195

196

Q. Apply the greedy single source shortest path algorithm on the graph
given below.

197

2. Bellman-Ford Algorithm (Dynamic)

198

199

Unit-04

Dynamic Programming

It is one of the algorithm design techniques used to solve optimization

problems. It is mainly an optimization over plain recursion. Wherever we

encounter a recursive solution with repeated calls for the same inputs, we

can optimize it using Dynamic Programming. The idea is to store the

results of subproblems so that we do not have to re-compute them when

needed later. This simple optimization reduces time complexities from

exponential to polynomial.

Principle of Optimality : The principle of optimality, developed by

Richard Bellman, is the basic principle of dynamic programming. It states

that in an optimal sequence of decisions, each subsequence must also be

optimal.

Memoization : It is the top-down approach (start solving the given
problem by breaking it down) . If we want, we can use this approach in
Dynamic programming as well, but we generally use iterative method
(tabulation method), which is the bottom-up approach, in Dynamic
programming.

Let’s try to understand Dynamic Programming approach with a suitable example.

Find Fibonacci term using plain recursion (recursive program).

200

 Fibonacci series : 0 1 1 2 3 5 . . .
 Fn: 0 1 2 3 4 5 . . . (Fibonacci terms)
 F3 term= 2 , F1 term=1 , F4 term=3, etc.

 int fib(int n)
 {
 if(n<=1)
 return n;
 return fib(n-2) + fib(n-1);
 }

 n if n<=1

T(n) = T(n-2) + T(n-1) +1 if n>1

Time complexity (Upper bound)

T(n) = 2T(n-1) + 1 [Since T(n-1) is almost equal to T(n-2)]

Using master method for decreasing functions, we get the time

complexity O(2n) , which is exponential.

Now, try to observe repeated recursive calls for the same argument

(input value) using a recursive tracing tree.

201

Count of Repeated Recursive calls in fig 1:

fib(3) – 2 times repeated, fib(2) – 3 times repeated, fib(1) – 5 times

repeated, and fib(0) -- 3 times repeated

We have got repeated recursive calls for the same input. It makes this

approach have exponential running time. It is where Dynamic

Programming approach comes into the picture, which reduces time

complexity drastically by avoiding repetitive computation for the same

recursive call.

Find Fibonacci term using memoization (Dynamic Programming
Approach).

202

int F[20]; // Global array

int fib(int n) // Function definition
 {

 if(n <= 1)
 return n;
 if(F[n] != -1)
 return F[n];

 F[n] = fib(n-2) + fib(n-1); // recursive call
 Return F[n];
 }

void main(void)
 {
 int i, result=0;

 for(i=0 ; i< 20 ; i++)
 F[i] = -1;
 result = fib(5);
 printf(“%d”, result); }

From the above example, we can observe the following points:

If we use memoization method to solve the same problem, we don’t

have to go for repetitive computation for the same recursive calls. It

means for fib(5), we have to compute recursive function calls only 6

times (fib(5), fib(4), fib(3), fib(2), fib(1) and fib(0)).

If we generalize it for fib(n), the number of recursive calls will be n+1.It

means time complexity will be O(n)- linear.

Note – We generally don’t use the memoization method in Dynamic

programming as it consumes more space due to recursion.

203

Note – Memoization follows top-down approach.

Iterative Method (tabulation method) for the Same Problem [

bottom-up approach]

int F[20];

int fib(int n)
{
 if(n <=1)
 {
 return n;
 }
 F[0]=0;
 F[1]=1;
 for(int i = 2; i<=n; i++)
 {
 F[i]= F[i-2] + F[i-1];
 }
return F[n];
}

1. 0/1 Knapsack Problem

The knapsack problem deals with putting items in the knapsack based
on the value/profit of the items. Its aim is to maximize the value inside
the bag. In 0-1 Knapsack, you can either put the item or discard it; there
is no concept of putting some part of an item in the knapsack like
fractional knapsack.

204

Q. Find an optimal solution to the 0/1 Knapsack instances n=4 and
Knapsack capacity m=8 where profits and weights are as follows p= {1,
2, 5, 6} and w = {2, 3, 4, 5}

Note – If weights are not given in the increasing order, then arrange
them in the increasing order and also arrange profits accordingly.

The matrix (mat[5][9]) will contain 9 columns (as capacity (m) = 8 is

given) and 5 rows (as n= 4 is given)

 Pi = profits

 Wi = weights

 i = Objects

 Formula to fill out cells : mat[i, w] = max (mat[i-1, w], mat[i-1, w-weight[i]+ p[i])

Short-cut to fill the table

1. Fill the first row and the first column with zero.

2. For the first object, check the weight (wi) of the first object, which

is 2. We have capacity w=2, so place profit of this object in the cell

having capacity of 2 units (mat[1][2]=1). So far, we have only one

object to consider , so we can put the first object (i = 1) having 2

units of weight (w1 = 2) in the knapsack having capacity (w)

205

3,4,5,6,7 and 8 units. Therefore, fill mat[1][3], mat[1][4], mat[1][5],

mat[1][6], mat[1][7] and mat[1][8] with 1.

3. For the cell(s) left side of the current cell, we just consider the

maximum value between left side and above of the current cell. For

example, for the left side of mat[1][2], we need to pick

max(mat[1][1], and mat[0][2]), which is 0. Therefore, place zero in

the mat[1][1].

4. For the second object, weight is given 3 units. Now, we can consider

two objects (1 and 2) together. The second object having 3 units of

weight can be placed in the cell [2][3] having 3 units of capacity.

Both objects together have 5 units of weight, which can be placed

in the cells [2][5], [2][6], [2][7] and [2][8] having 5 units of capacity.

For the cell [2][2], pick max(mat[2][1], mat[1][2]) which is 1. And

follow the same for the cell [2][4].

5. For the third object, 4 units of weight is given. Now, we can

consider three objects (1,2, and 3 objects) together . Weight of the

third object is 4 units , so we can place its profit (5) in the cell [4][4]

having 4 units of capacity. Objects 2 and 3 together have 7 units of

weight and 7 units of profit (5+2), so we can place them in the cell

[3][7] having 7 units of capacity. Object 1 and 3 together have 6

units of weight, so we can place them in the cell [3][6] having 6

units of capacity. To fill out remaining cells , follow above steps.

Maximum profits = 8 (placed in the last cell of the matrix)

206

Selection of objects Xi = X1 X2 X3 X4 (0 1 0 1)

Only objects 2 and 4 have been placed in the knapsack to gain

maximum profit.

 Pi Wi 0
 1 2 1
 2 3 2
 5 4 3
 6 5 4

 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1

0 0 1 2 2 3 3 3 3

0 0 1 2 5 5 6 7 7

0 0 1 2 5 6 6 7 8

2. Single Source Shortest Path using Bellman-Ford Algorithm (

Dynamic Programming)

 Kindly refer unit-03 notes

3. All Pairs Shortest Path (Floyd-Warshall Algorithm)

Apply Floyd-Warshall algorithm on the below graph:

 3

 8

 7 2 5 2

 1

Instances/

Objects (i)

Capacity(w)

1 1

1 1

207

208

209

210

4. Matrix Chain Multiplication Problem

We are given n matrices A1, A2, …. , An and asked in what order these
matrices should be multiplied so that it would take a minimum number of
computations to derive the result.

Two matrices are called compatible only if the number of columns in the first
matrix and the number of rows in the second matrix are the same. Matrix
multiplication is possible only if they are compatible. Let A and B be two
compatible matrices of dimensions p x q and q x r. Each element of each row
of the first matrix is multiplied with corresponding elements of the appropriate
column in the second matrix.

The total number of multiplications required to multiply matrix A and matrix
B is p x q x r.

Suppose dimension of two matrices are :

A1 = 5 x 4

A2 = 4 x 3

Resultant matrix will have 15 elements (5 rows and 3 columns), and each
element in the resultant matrix is derived using 4 multiplications. It means 60
(5 x 4 x 3) multiplications are required.

We cannot multiply A2 = (4 x 3) and A1 = (5 x 4) as column of A2 and row of
A1 are different. Therefore, we can parenthesize A1 and A2 in one way only
i.e., (A1 x A2).

211

Suppose dimension of three matrices are :

A1 = 5 x 4
A2 = 4 x 6
A3 = 6 x 2

1. In how many ways can we parenthesize them?
2. How many multiplications are required to derive the resultant matrix?

Formula to find out all valid combinations: 1/n x 2(n – 1)Cn-1

For n=3

1/3 x 4C2

1/3 x 4! / 2! * (4 – 2)!
1/3 x 4 x 3 x 2! / 2! * 2!
1/3 x 4 x 3 / 2!
 = 2 (We can parenthesize these three matrices only in two ways.)

A. A1 (A2 X A3) [First possible order of multiplication]
(5 x 4) { (4 x 6) (6 x2) } [Here last two matrices require 48 multiplications]
(5 x 4) (4 x 2) [Here two matrices require 40 multiplications]
Total 88 multiplications are required.

B. (A1 X A2) A3 [Second possible order of multiplication]
{ (5 X 4) (4 X 6)} (6 X 2)
(5 X 6) (6 X 2)
Total 180 multiplications are required.

The answer of both multiplication sequences would be the same in the resultant matrix
having 5 rows and 2 columns, but the numbers of multiplications are different. This leads
to the question- what order should be selected for a chain of matrices to minimize the
number of multiplications to reduce time complexity?

212

213

214

215

V.V.I

216

V.V.I

217

V.V.I

218

219

Travelling Salesman Problem using Least Cost Branch and Bound

In this Problem, a salesman must visits n cities. We can say that salesman wishes to make

a tour, visiting each city exactly once and finishing at the city he starts from. The goal is

to find a tour of minimum cost. We assume that every two cities are connected. We can

model the cities as a complete graph of n vertices, where each vertex represents a city.

220

221

222

l

223

Unit-05

 Problems

 Solvable Unsolvable

Solvable problems - A problem is said to be solvable if we know either

there exists a solution or we are able to prove mathematically that the

problem cannot be solved.

Unsolvable problems – A problem is said to be unsolvable if we know

neither there exists a solution nor we are able to prove mathematically

that the problem cannot be solved. It means that in the future we will

have all problems currently in unsolvable domain in solvable domain for

sure. For example, time complexity of Shell sort.

 Solvable Problems

 Decidable Problems Undecidable Problems

224

Decidable Problems – A problem is said to be decidable if we are able to

predict the time to solve the problem. It means that we have an

algorithm as well as procedure to solve the problem. For example,

sorting problem.

Undecidable Problems – A problem is said to be undecidable if we are

not able to predict the time to solve the problem. It means that we have

only procedure to solve the problem but not an algorithm- which is used

to predict the time. For example, if I ask ,” Is it possible to become the

PM of India?” Answer is yes as we have a certain procedure to become

the PM of India, but the time for this problem cannot be predicted.

Q 1. Explain the complexity classes P, NP, NPC and NP hard. How are

they related to each other?

P class – P stands for polynomial. It is a set of problems which can be

solved as well as verified in polynomial time. Linear Search O(n) , Binary

Search O(logn), Merge Sort O(nlogn), Heap Sort O(nlog), etc., are the

examples of algorithms which solve the problem in polynomial time.

Note - Whatever algorithms we studied before dynamic programming

belong to P class only.

NP class – NP stands for non-deterministic polynomial. It is a set of

decision problems for which there exists a polynomial time verification

algorithm. For example, for TSP , so far (we don’t know about future),

we have been unable to find out any polynomial time solution but then,

given a solution of a TSP , we can verify it in polynomial time.

225

Note – If a problem belongs to P, then by default, it also belongs to NP

because it can be verified in polynomial time, but vice versa does not hold

good.

 NP

As of now, NP minus P (NP-N) problems have been unable to be solved

in polynomial time. We don’t know if these problems (TSP, 0/1

Knapsack, etc.) can be solved in polynomial time in the future or not.

NP hard class – If every problem in NP can be polynomial time reducible

to a problem “A”, then ‘A’ is called NP hard. If “A” could be solved in

polynomial time, then by default, every problem in NP would become P.

NP complete class – A problem is said to be NP complete if it is NP as

well as NP hard.

 NP NP hard

 NPC

P

P

226

 Fig - How P, NP, NP hard and NP complete are related to each other.

Q2. What are approximation algorithms? What is meant by P (n)

approximation algorithms? Discuss approximation algorithm for Vertex

cover problem.

An approximation algorithm is a way of dealing with NP-completeness for
an optimization problem. This technique does not guarantee the best
solution. The goal of the approximation algorithm is to come as close as
possible to the optimal solution in polynomial time.

Some examples of the Approximation algorithm :

1. The Vertex Cover Problem
2. Travelling Salesman Problem
3. The Set Covering Problem
4. The Subset Sum Problem

If an algorithm reaches an approximation ratio of P (n), then we call it a P
(n)-approximation algorithm.

C = Cost of solution
C*= Cost of optimal solution

• For a maximization problem, 0< C < C*, and the ratio of C*/C (approximation

ration) gives the factor by which the cost of an optimal solution is larger than
the cost of the approximate algorithm.

• For a minimization problem, 0< C* < C, and the ratio of C/C* gives the factor
by which the cost of an approximate solution is larger than the cost of an
optimal solution.

Vertex Cover Problem – Given an undirected graph, the vertex cover problem
is to find minimum size vertex cover. Although the name is Vertex Cover, the set
covers all edges of the given graph. It is a minimization problem because we have
to find a set of vertices containing minimum number of vertices covering all edges
of the given undirected graph.

227

Approximation algorithm for vertex cover problem

[Important for your university exam]

Example –

Solution –

Line 1. C = solution set, which is empty in the beginning.

Line 2. E ʹ = { (a, b), (a, c), (c, d), (b, d), (d, e)} // set of edges

Line 3. While E ʹ ! = empty

Line 4. Add an arbitrary edge from E ʹ in the solution set on line 5.

Suppose we consider (a, b) from E ʹ, then

e

a

c d

b

228

Line 5. C = C U { a, b }

 C = { a, b } // As of now solution set contains two vertices

Line 6. Remove every edge incident on either a or b vertex. Therefore,

Remove the following edges from E ʹ :

(a, b), (b, c), and (a, c) [These three edges are incident on a and b.]

Now, E ʹ = { (c, d), (b, d), (d, e) }

As E ʹ is not empty, add another arbitrary edge from E ʹ in the solution

set C. Let’s take the edge (c, d) now.

 C = { a, b, c, d}

Using line number 6, remove every edge incident on either vertex c and

d. Therefore, remove (c, d), (b, d) and (d, e) from E ʹ. E ʹ is empty now,

so return C using line number 7, which contains four vertices a, b,

c, and d.

C is a set of minimum number of vertices, which covers all edges.

Randomized algorithm – Algorithms using random numbers to decide

what to do next anywhere in its logic is called Randomized Algorithm. For

example, in Randomized Quick Sort, we use a random number to pick

the next pivot (or we randomly shuffle the array). Typically, this

randomness is used to reduce time complexity or space complexity in

other standard algorithms.

https://practice.geeksforgeeks.org/courses/dsa-self-paced?utm_source=page&utm_medium=page&utm_campaign=dsa-self-paced
https://practice.geeksforgeeks.org/courses/dsa-self-paced?utm_source=page&utm_medium=page&utm_campaign=dsa-self-paced

229

String Matching Algorithms

String matching algorithms, sometimes called string searching

algorithms, are an important class of string algorithms that try to find

a place where one or several strings (also called pattern) are found

within a large string or text. For example,

If text array = T [1 . . . n] and pattern array = P[1 . . . m], then we have

to find out P in T. Therefore, length of P must be less than or equal to T.

Both the pattern and searched text belong to ∑ (set of alphabets) , and

it can contain either English alphabet (finite set) or binary number (0

and 1).

We have the following algorithms to search a patter in the given text:

1. Naive String-Matching Algorithm.

2. Rabin-Karp String Matching Algorithm

3. Finite Automata String Matching Algorithm

4. Knuth-Morris-Pratt (KMP) String Matching Algorithm

 Naive String-Matching Algorithm

The naive approach tests all the possible placement of Pattern P

[1.......m] relative to text T [1......n]. We try shift s = 0, 1.......n-m

successively and for each shift s. Compare T [s+1.......s + m] to P

[1......m].

230

Q. Reframe an algorithm for naive string matcher?

Algorithm

 NAIVE-STRING-MATCHER (T, P)

 1. n ← length [T]

 2. m ← length [P]

 3. for s ← 0 to n -m

 4. do if P [1...m] = T [s + 1....s + m]

 5. then print "Pattern occurs with shift" s

Find an example on the next page.

231

232

Rabin-Karp String Matching Algorithm

The Rabin–Karp algorithm is a string-searching algorithm created by

Richard M. Karp and Michael Rabin (1987) that uses hashing to find an

exact match of a pattern string in a text. They suggest the hash function

by choosing a random prime number q and calculate p[1 ….. m] mod q.

Algorithm

Q 3. For q = 11, how many valid and spurious hits are found for

the given Text and Pattern:

 T = 3141592653589793

 P = 26

Solution –

Step -1 Find p mod q

 26 % 11 = 4

Step -2 As “p” contains a 2 digits number, find mod 11 of each 2

digits number from T as follows:

233

T = 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3

31 mod 11 = 9

14 mod 11 = 3

41 mod 11 = 8

15 mod 11 = 4

59 mod 11 = 4

92 mod 11= 4

26 mod 11 = 4

65 mod 11 = 10

53 mod 11 = 9

35 mod 11 = 2

58 mod 11 = 3

89 mod 11 = 1

97 mod 11 = 9

79 mod 11 = 2

93 mod 11 = 5

We consider only the number which gives us 4 after performing

mod 11. Therefore, we have :

15 mod 11 = 4

59 mod 11 = 4

92 mod 11= 4

26 mod 11 = 4[Here, 26 is equal to P (pattern), so it is a valid hit]

Three spurious hits in yellow and one valid hit in red.

234

Finite Automata Based String Matching Algorithm

For a given pattern P, we construct a string-matching automaton in a

preprocessing step before using it to search the text string.

Algorithm

For the pattern p = abcd

Prefixes of P = a, ab, abc, abcd [started from the left side]

Suffixes of P = d, cd, bcd, abcd [started from the right side]

In order to specify the string-matching automaton corresponding

to a given pattern p[1 . . . m], we first define an auxiliary function σ

, called suffix function. σ(x) is the length of the longest prefix of p

that is also a suffix of x. For example,

For the pattern p = abab and x = aba

σ(x) = ?

“a” is a suffix of x as well as a prefix of p

“aba” is a suffix of x as well as prefix of p.

Length of “a” = 1

235

Length of “aba” = 3

Therefore, σ(x) = 3

Example – T = {abababacaba} and p ={ababaca}

Solution – Pattern length (m) = 7

 Number of states = m+1 = 8

 Q = { q0, . . ., q7 }

 ∑ = { a, b, c }

Prefixes of P ={ a, ab, aba, abab, ababa, ababac, ababaca}

Now, we can create a transition table for P using suffix function σ.

Transition function δ : Q x ∑ → Q

δ(q0 , a) = σ(a) = 1 (since “a” is a prefix in P and a’s length is 1)

δ(q0 , b) = σ(b) = 0 (No transition as “b” is not a prefix in P)

δ(q0 , c) = σ(c) = 0 (No transition as “c” is not a prefix in P}

δ(q1 , a) = σ(aa) = 1 (only single “a” is a prefix in P)

δ(q1 , b) = σ(ab) = 2 (“ab” is a prefix in P and its length is 2)

δ(q1 , c) = σ(ac) = 0 (No transition as “ac” is not a prefix in P)

δ(q2 , a) = σ(aba) = 3 (“aba” is a prefix in P and its length is 3)

δ(q2 , b) = σ(abb) = 0 (None of its suffixes (b, bb and abb) is in P)

δ(q2 , c) = σ(abc) = 0 (None of its suffixes (c, bc and abc) is in p)

236

δ(q3 , a) = σ(abaa) = 1 (Among suffixes (a,aa,baa,abaa) only “a” is

a prefix in P and its length is 1)

δ(q3 , b) = σ(abab) = 4 (“abab” is a prefix in p and its length is 4)

δ(q3 , c) = σ(abac) = 0(among all suffixes (c, ac, bac, abac), none

is there in p; therefore, no transition)

δ(q4 , a) = σ(ababa) = 5 (“ababa” is a prefix in p and its length is 5)

δ(q4 , b) = σ(ababb) = 0 (among all suffixes , none is there in p)

δ(q4 , c) = σ(ababc) = 0 (among all suffixes , none is there in p)

δ(q5 , a) = σ(ababaa) = 1(among all suffixes (a, aa, baa, abaa,

babaa, ababaa) only “a” is prefix in p and its length is 1)

δ(q5 , b) = σ(ababab) = 4 (among all suffixes (b, ab, bab, abab,

babab, ababab) the longest prefix “abab” is in p and its length is 4)

δ(q5 , c) = σ(ababac) = 6 (“ababac” is a prefix in p and its length is

6)

δ(q6 , a) = σ(ababaca) = 7 (“ababaca” is a prefix in p and its length

is 7)

δ(q6 , b) = σ(ababacb) = 0

δ(q6 , c) = σ(ababacc) = 0

δ(q7 , a) = σ(ababacaa) = 1(among all suffixes(a, aa, caa,….) only

“a” is in p)

δ(q7 , b) = σ(ababacab) =2 (among all suffixes (b, ab, cab, …) only

ab is in p)

δ(q7 , c) = σ(ababacac) = 0 (None of the prefixes is there in p)

237

238

Knuth-Morris-Pratt (KMP) String Matching Algorithm

KMP is a linear time string matching algorithm. It uses concept of prefix and suffix
to generate Π table.

KMP-MATCHER (T, P)

 1. n ← length [T]

 2. m ← length [P]

 3. Π← COMPUTE-PREFIX-FUNCTION (P)

 4. q ← 0 // numbers of characters matched

 5. for i ← 1 to n // scan S from left to right

 6. do while q > 0 and P [q + 1] ≠ T [i]

 7. do q ← Π [q] // next character does not match

 8. If P [q + 1] = T [i]

 9. then q ← q + 1 // next character matches

 10. If q = m // is all of p matched?

 11. then print "Pattern occurs with shift" i - m

 12. q ← Π [q] // look for the next match

COMPUTE- PREFIX- FUNCTION (P)

 1. m ←length [P] //'p' pattern to be matched

 2. Π [1] ← 0

 3. k ← 0

 4. for q ← 2 to m

 5. do while k > 0 and P [k + 1] ≠ P [q]

 6. do k ← Π [k]

 7. If P [k + 1] = P [q]

 8. then k← k + 1

 9. Π [q] ← k

 10. Return Π

239

Q 4. Compute the prefix function Π for the pattern

ababbabbabbababbabb when the alphabet is ∑ = { a, b }.

Π – It is also called the longest prefix which is same as some suffix

(LPS).

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

p a b a b b a b b a b b a b a b b a b b

Π 0 0 1 2 0 1 2 0 1 2 0 1 2 3 4 5 6 7 8

Note – Use any short-cut trick to prepare LPS or Π table in the exam.

 Fast Fourier Transform (FFT)

An FFT algorithm computes the discrete Fourier transform (DFT) of a

sequence or its inverse DFT in time O(nlogn).

All the best

